期刊文献+

A Collaborative Filtering Recommendation Algorithm Based on the Difference and the Correlation of Users’Ratings

下载PDF
导出
摘要 The traditional similarity algorithm in collaborative filtering mainly pay attention to the similarity or correlation of users’ratings,lacking the consideration of difference of users’ratings.In this paper,we divide the relationship of users’ratings into differential part and correlated part,proposing a similarity measurement based on the difference and the correlation of users’ratings which performs well with non-sparse dataset.In order to solve the problem that the algorithm is not accurate in spare dataset,we improve it by prefilling the vacancy of rating matrix.Experiment results show that this algorithm improves significantly the accuracy of the recommendation after prefilling the rating matrix.
出处 《国际计算机前沿大会会议论文集》 2017年第1期13-15,共3页 International Conference of Pioneering Computer Scientists, Engineers and Educators(ICPCSEE)
  • 相关文献

参考文献1

二级参考文献15

  • 1邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 2Koren Y.Factorization Meets the Neighborhood:A Multifaceted Collaborative Filtering Model[C]//Pro-ceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,USA:ACM Press,2008:426-434.
  • 3Luo Xin,Liu Huijun,Gou Gaopeng,et al.A Parallel Matrix Factorization Based Recommender by Alternating Stochastic Gradient Decent[J].Engineering Applications of Artificial Intelligence,2012,25(5):1403-1412.
  • 4Wang Jun,de Vries A P,Reinders M J T.Unifying User-based and Item-based Collaborative Filtering Approaches by Similarity Fusion[C]//Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York,USA:ACM Press,2006:501-508.
  • 5Baralis E,Garza P.Item Selection for Associative Classification[J].International Journal of Intelligent Systems,2012,27(3):279-299.
  • 6Harald Steck.Item Popularity and Recommendation Accuracy[C]//Proceedings of the 5th ACM Conference on Recommender Systems.New York,USA:ACM Press,2011:125-132.
  • 7马宏伟,张光卫,李鹏.协同过滤推荐算法综述[J].小型微型计算机系统,2009,30(7):1282-1288. 被引量:203
  • 8黄创光,印鉴,汪静,刘玉葆,王甲海.不确定近邻的协同过滤推荐算法[J].计算机学报,2010,33(8):1369-1377. 被引量:217
  • 9罗辛,欧阳元新,熊璋,袁满.通过相似度支持度优化基于K近邻的协同过滤算法[J].计算机学报,2010,33(8):1437-1445. 被引量:126
  • 10陈志敏,李志强.基于用户特征和项目属性的协同过滤推荐算法[J].计算机应用,2011,31(7):1748-1750. 被引量:28

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部