摘要
针对传统低秩表示不能准确描述数据结构的问题,提出一种图正则平滑低秩表示的特征选择算法。在构造目标函数时,利用对数行列式函数代替核范数来平滑估计秩函数,引入流形正则项;利用非精确交替方向法进行求解,并且采用后处理方式构造数据的图结构。该算法能够准确地描述数据全局子空间结构和局部线性结构。在基因表达谱数据集上进行聚类实验,同其他特征选择算法相比较,实验结果证明了该算法的有效性。
An improved feature selection algorithm of graph regularization smoothed low rank representation is proposed to solve the problem of inaccuracy of describing data structure using traditional low-rank representation.When constructing the objective function,the logarithm determinant function is used to do smoothing estimation instead of Kernel function,and manifold regularized item is added.The objective function is solved by ADM and the graph construction is restructured by a post-processing method.This algorithm can describe global subspace structure and partial linear structure accurately.After clustering experiment in gene expression profile and comparing with other feature selection algorithm,the results verify the effectiveness of the proposed approach.
作者
杨国亮
康乐乐
Yang Guoliang;Kang Lele(School of Electrical Engineering and Automation,Jiangxi University of Science and Technology,Ganzhou 341000,Jiangxi,China)
出处
《计算机应用与软件》
北大核心
2018年第3期157-161,166,共6页
Computer Applications and Software
基金
国家自然科学基金项目(51365017)
江西省教育厅科技计划项目(GJJ150680)
关键词
对数行列式
图正则
低秩表示
特征选择
Logarithm determinant
Graph regularization
Low rank representation
Feature selection