期刊文献+

基于烟花算法的非合作博弈Nash均衡问题求解 被引量:3

SOLVING NASH EQUILIBRIUM OF NON-COOPERATIVE GAME BASED ON FIREWORKS ALGORITHM
下载PDF
导出
摘要 提出一种求解N人有限非合作博弈Nash均衡的群体智能算法—烟花算法(FWA)。烟花爆炸后产生爆炸火花和高斯变异火花,根据火花的适应度值的好坏产生下一代烟花,适应度值较好的火花在较小范围内产生较多的爆炸火花,反之,适应度值较差的火花在较大范围内产生较少的爆炸火花。通过高斯变异火花增加种群的多样性,这种爆炸搜索机制对较好火花附近的区域搜索更加彻底并且避免过早陷入局部寻优。实验结果表明,烟花算法在求解N人有限非合作博弈Nash均衡问题上优于免疫粒子群算法。 The fireworks algorithm(FWA)is proposed to solve finite non-cooperative game among N people.The fireworks generate explosive and gaussian mutation sparks,then the next sparks are generated based on fitness.Sparks with higher fitness will generate more explosive sparks in smaller scope while sparks with lower fitness will generate less explosive sparks in larger scope.This explosive searching mechanism can provide a more complete search in area of greater sparks and avoid falling into local optimum based on the increased group diversity by Gaussian mutation.The results demonstrate that the proposed algorithm is effective and superior to the immune particle swarm algorithm in solving Nash equilibrium of non-cooperative game among N people.
作者 杨彦龙 向淑文 夏顺友 贾文生 Yang Yanlong;Xiang Shuwen;Xia Shunyou;Jia Wensheng(College of Computer Science and Technology,Guizhou University,Guiyang 550025,Guizhou,China;College of Mathematics and Statistics,Guizhou University,Guiyang 550025,Guizhou,China)
出处 《计算机应用与软件》 北大核心 2018年第3期215-218,共4页 Computer Applications and Software
基金 国家自然科学基金项目(11161008 11561013) 国家教育部博士点基金项目(20115201110002)
关键词 烟花算法 爆炸半径 非合作博弈 NASH均衡 Fireworks algorithm Explosion radius Non-cooperative game Nash equilibrium
  • 相关文献

参考文献9

二级参考文献79

  • 1温海骏,侯世旺.基于维信息共享的粒子群优化算法在作业车间调度中的应用[J].工业工程,2014,17(1):30-36. 被引量:3
  • 2高鹰,谢胜利.混沌粒子群优化算法[J].计算机科学,2004,31(8):13-15. 被引量:104
  • 3余谦,王先甲.基于粒子群优化求解纳什均衡的演化算法[J].武汉大学学报(理学版),2006,52(1):25-29. 被引量:37
  • 4邱中华,高洁,朱跃星.应用免疫算法求解博弈问题[J].系统工程学报,2006,21(4):398-404. 被引量:10
  • 5Pavlidis N G,Parsopoulos K E,Vrahatis M N.Computing Nash Equilibria Through Computational Intelligence Methods[J].Journal of Computational andApplied Mathematics,2005,175(1):113-136.
  • 6Parsopouios K E,Vrahatis M N.On the Computation of All Global Minimizers Through Particle Swarm Optimization[J].IEEE Transactions On Evolutionary Computation,2004,8(3):211-224.
  • 7Dofigo M,Gambardella L M.Ant Colony System:A Cooperative Learning Approach to the Traveling Salesman Problem[J].IEEE Transactions on Evolutionary Computation,1997,1(1):53-66.
  • 8Dreo J,Siarry P.An Ant Colony Algorithm Aimed at Dynamic Continuous Optimization[J].Applied Mathematics and Computation,2006,181(1):457-467.
  • 9Krzysztof S,Dongo M.Ant Colony Optimization for Continuous Domains[J].European Journal of Operational Research,2006,185(3):1155-1173.
  • 10Baskan O,Haldenbilen S,Ceylan H.A New Solution Algorithm for Improving Performance of Ant Colony Optimization[J].Applied Mathematics and Computation,2009,211(1):75-84.

共引文献169

同被引文献16

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部