期刊文献+

概率约束优化问题的一个光滑D.C.近似 被引量:1

A smooth D.C.approximation of probabilistic constrained optimization problems
下载PDF
导出
摘要 概率约束优化问题通常是非凸且非光滑的,因而在数值计算上存在困难.基于Pinar-Zenios光滑和函数,建立了概率约束优化问题的一个光滑D.C.近似问题,提出了求解光滑D.C.近似问题的序列凸近似(SCA)算法,分析了初始解的选取方法,并讨论了算法的收敛性,收敛定理表明可以由SCA算法可以得到光滑D.C.近似问题的KKT点,并且在迭代过程中,确保了由SCA算法生成的解序列的极限点是近似问题的KKT点. Probabilistic constrained optimization problems are usually non\|convex and non\|smooth,so there are some difficulties in numerical calculation.A smooth D.C.approximation of probabilistic constrained optimization problems is established based on Pinar\|Zenios smooth plus function.Sequential convex approximation(SCA)algorithms for solving smooth D.C.approximation problems are proposed.The selection method of initial solutions is analyzed and the convergence of the algorithm is discussed.The convergence theorem shows that the KKT point of the smooth D.C.approximation problem can be obtained by sequential convex approximation(SCA)algorithm.It is ensured that the limit point of the solution sequence generated by the sequence convex approximation(SCA)algorithm is a KKT point of the approximate problem in the iterative process.
作者 任咏红 曹丽娜 REN Yonghong;CAO Lina(School of Mathematics, Liaoning Normal University, Dalian 116029, China)
出处 《辽宁师范大学学报(自然科学版)》 CAS 2018年第1期17-21,共5页 Journal of Liaoning Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(11671184) 辽宁省自然科学基金指导计划项目(201602459) 辽宁省高校科学研究项目(L2015291)
关键词 概率约束 Pinar-Zenios光滑和函数 光滑D.C.近似 序列凸近似算法 probabilistic constraint Pinar-Zenios smooth plus functions smooth D.C.approximation sequential convex approximation algorithm
  • 相关文献

参考文献3

二级参考文献14

  • 1Ben-Tal, Nemirovski A. Robust solutions of linear pro- gramming problems contaminated with uncertain data[ J ]. Mathematical programming,2000,88:411-424.
  • 2Rockafellar R T, Uryasev S. Optimization of conditional value-at-risk[ J ]. The Journal of Risk,2000,2:21-41.
  • 3Nemirovski A, Shapiro A. Convex approximations of chance constrained programs[ J ]. SIAM Journal on Optimi- zation,2006,17:969-996.
  • 4Hong L J, Yang Y, Zhang L. Sequential convex approxima- tions to joint chance constrained programs: A Monte Carlo approach[J ]. Operations Research,2011,59:617-630.
  • 5Boyd S, Vandenberghe L. Convex Optimization[M]. Cam- bridge University Press, Cambridge, UK,2004.
  • 6RockafeUar R T, Wets R J-B. Variational Analysis[M]. Springer-Verlag,New York, 1998.
  • 7BEN-TAL,NEMIROVSKI A. Robust solutions of linear programming problems contaminated with uncertain data[J]. Mathemati- cal Programming, 2000,88 : 411-424.
  • 8ROCKAFELLAR R T, URGASEV S. Optimization of conditional value-at-risk[J]. The Journal of Risk,2000,2:21-41.
  • 9NEM1ROVSKI A,SHAPIRO A. Convex approximations of chance constrained programs[J]. SIAM Journal on Optimization,2006, 17:969-996.
  • 10HONG L J, YI Y, ZHANG L W. Sequential convex approximations to joint chance constrained programs:a monte carlo approach [J]. Operation Research,2011,59(3) :617-630.

共引文献4

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部