期刊文献+

NEMD方法:预测修饰型(6,6)单壁碳化硅纳米管的热导率

NEMD:Prediction of the thermal conductivity of the modified(6,6)single-wall silicon carbide nanotubes
下载PDF
导出
摘要 采用了非平衡分子动力学方法,分别计算了相同管径下N、P修饰碳化硅纳米管的热导率.得到了热导率随掺杂原子数占总原子数的百分比变化的曲线,进而根据这些曲线,讨论掺杂原子数占总原子数的百分比对碳化硅纳米管热导率的影响,以及掺杂原子不同导致的热导率差异.研究结果表明,由于掺杂存在于晶格结构中,声子平均自由程的大小将会受到不可忽视的影响.在相同条件下,掺杂原子数占总原子数的百分比越大,声子与杂质之间的散射概率也随之增大,热阻变大,碳化硅纳米管热导率越小.P修饰的(6,6)单壁碳化硅纳米管的热导率下降趋势明显高于N修饰的(6,6)单壁碳化硅纳米管. Using non-equilibrium molecular dynamics method to calculate the thermal conductivity of silicon carbide nanotubes of the same pipe diameter with N/P modified.Get the curve of thermalconductivity changing with doping concentrations,and discussing the influences of doping concentration in silicon carbide nanotubes,and the differences in thermal conductivity with different kinds of atoms.Due to doping exists in lattice structures according the research result,the size of phonon’s average free path will be affected and it cannot be ignored.In the same conditions,the more doping concentration is,the bigger the scattering probability between phonons and impurity will increase subsequently,the thermal resistance will be smaller,the thermalconductivity of silicon carbide nanotubes will be micrified.P atoms modified(6,6)single wall thermal conductivity of silicon carbide nanotubes decline significantly higher than N atoms modified(6,6)single wall thermal conductivity of silicon carbide nanotubes
作者 白素媛 支明蕾 王立凡 王斌 贾孟晗 BAI Suyuan;ZHI Minglei;WANG Lifan;WANG Bin;JIA Menghan(School of Physics and Electronic Technology , Liaoning Normal University , Dalian. 116029 , China)
出处 《辽宁师范大学学报(自然科学版)》 CAS 2018年第1期40-45,共6页 Journal of Liaoning Normal University:Natural Science Edition
基金 辽宁省自然科学基金项目(2015020079)
关键词 碳化硅纳米管 掺杂原子数占总原子数的百分比 分子动力学 声子 silicon carbide nanotubes doping concentration molecular dynamics phonon
  • 相关文献

参考文献4

二级参考文献53

  • 1陈慧,陈云飞,陈敏华,毕可东.填充氩后单壁碳纳米管的导热系数[J].东南大学学报(自然科学版),2006,36(3):416-419. 被引量:5
  • 2毕可东,陈云飞,杨决宽,陈敏华.不同结构单壁碳纳米管热传导的分子动力学模拟[J].东南大学学报(自然科学版),2006,36(3):420-422. 被引量:3
  • 3Iijima S. Helical. Microtubes of graphitie [J]. Nature, 1991, 354 (6348):56-58.
  • 4RouffR S, Lorents. D.C. Mechanical and thermal properties of carbon nanotubes [J]. Carbon, 1995, 33:925-930.
  • 5Mingo N, Broido D A. Length dependence of carbon nanotube thermal conductivity and the " problem of long waves" [J]. Nano Letters, 2005, 5(7):1221-1225.
  • 6Hone J, Whitney M. Thermal Conductivity of Single-Walled Carbon Nanotubes [J]. Phsy. Rev B. , 1999, 59:2514-2516.
  • 7Chang C W, Wei-Qiang Han, Zettl A. Thermal Conductivity of B-C-N and BN nanotubes [J]. Apply Physics Letters, 2005, 86:173102.
  • 8R Fletcher, C Reeves. Function minimization by conjugate gradients [J]. The Computer Journal, 1964, 7 :149 -154.
  • 9Roland PassIer. Basic moments of phonon density of states spectra and characteristic phonon temperatures of group of Ⅳ, Ⅲ-Ⅴ, and Ⅱ- Ⅵ materials [J]. J. Appl. Phys, 2007, 101(093513) :1-12.
  • 10Allen M P, Tildesley D J. Computer Simulation of Liquids [M]. Oxford: Clarendon Press,1987.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部