期刊文献+

RoboCup3D仿真机器人步态优化研究

Gait Optimization Research on RoboCup3D Simulation
下载PDF
导出
摘要 在RoboCup3D比赛中,拥有一个快速灵活、稳定的步态模式是赢得机器人足球比赛的关键之一。为了获得这样的步态模式,提出一种双足机器人垂直质心高度可变的机器学习训练方法。首先,通过规划双足机器人垂直质心高度的轨迹、利用倒立摆模型和数值化方法控制零力矩点,实现双足机器人的类人行走。然后,采用自适应协方差矩阵进化算法对步态参数优化,为了获得快速稳定的步行,采用累积分层的学习方法在之前优化的基础上进一步优化。最后,采用蜂拥编队壁障算法验证多机器人环境下优化步态的稳定性、灵活性。实验和竞赛结果均表明本文提出算法的有效性。 In the RoboCup3D competition,a flexible and stable gait pattern is one of the key for the humanoid robot to win the match,to achieve such walk gait,a machine learning method of optimizing the vertical Center of Mass(Com)trajectory is presented.Firstly,to generate bipedal walk slowly and unsteadily,the vertical Com trajectory is planed by multiple polynomial,the inverted pendulum model(IPM)and a numerical method are utilized to control the Zero Moment Point(ZMP).Secondly,to get a fast and stable bipedal walk,a overlapping layered learning method is proposed to optimize the walking parameters which is based on Covariance Matrix Adaptation Evolution Strategy(CMA-ES).Finally,flocking control is applied to verify the flexibilty of the optimized gait in multi-robot environment.The experimental and competition results show that the proposed method is effective.
作者 何荣义 李春光 HE Rong-yi;LI Chun-guang(College of Computer and Information, Hohai University, Nanjing 210098,China;School of Computer Information and Engineering, Changzhou Institute of Technology, Changzhou 213002,China)
出处 《计算机与现代化》 2018年第3期20-25,共6页 Computer and Modernization
关键词 双足机器人 步态优化 倒立摆模型 进化算法 机器人世界杯 humaniod robot gait optimization IPM evolutionary algorithm RoboCup
  • 相关文献

参考文献1

二级参考文献18

  • 1梶田秀司.仿人机器人[M].北京:清华大学出版社,2007.
  • 2Hengst B , Ibbotson 0, Pham S B, et aI. Omnidirectional locomotion for quadruped robots[C]. Robot Soccer World Cup V. Springer, 2002 :368-373.
  • 3Luo Ding-sheng, Wang Yi, Wu Xi-hong. Active online learning of the bipedal walking[EB/OL]. http://birg2. epfl. chi -Jvanden/ pdfupload/Paper% 20101,2012.
  • 4Hansen N. The CMA evolution strategy: a tutorial[EB/OL]. ht-tp:1 Iwww.lri.fr/- hansen/cmatutorial, pdf ,2012.
  • 5Hansen N. The CMA evolution strategy: a comparing review[C]. In LozanoJA, Larranaga P, Inza I, and Bengoetxea E, editors, Towards a New Evolutionary Computation. Advances on Estimation of Distribution Algorithms, Springer ,2006 : 75 -1 02.
  • 6Daniel Urieli, Patrick MacAlpine, Shivaram Kalyanakrishnan, et aI. On optimizing interdependent skills: a case study in simulated 3D humanoid robot soccer[C]. In Proc. of 10th Int. Conf. on Autonomous Agents and Multiagent Systems( AAMAS 2011 ) , Tai-pei, Taiwan ,2011: 769-776.
  • 7Patrick MacAlpine, Samuel Barrett, Daniel Urieli, et al. Design and optimization of an omnidirectional humanoid walk: a winning ap-proach at the RoboCup 2011 3D simulation competition[C]. To be Appear in the Twenty-Sixth Conference on Artificial Intelligence (AAAI-12) , Toronto,Ontario,Canada,2012.
  • 8Malte Rommermann, Mark Edgington,Jan Hendrik Metzen, et aI. Learning walking patterns for kinematically complex robots using e-volution strategies[C]. Proceedings of the 10th International Con-ference on Parallel Problem Solving from Nature, Springer Berlin, Heidelberg ,2008: 1091-1100.
  • 9Shuuji Kajita,Fumio Kanehiro,Kenji Kaneko, et al. The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation[C]. Proceedings of the 2001 IEEElRSJ Inter-national Conference on Intelligent Robots and Systems, Maui, Ha-waii, USA:IEEE, 2001 :239-246.
  • 10Vukobratovic M,Borovac B. Zero-moment point-thirty five years of its life[J]. InternationalJournal of Humanoid Robotics, 2004, 1 (i) : 157-173.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部