期刊文献+

基于差值矩阵分解的推荐算法 被引量:2

Recommendation Algorithm Based on Difference Value Matrix Factorization
下载PDF
导出
摘要 矩阵分解已经成为预测用户对物品评分的一种常用方法。传统的矩阵分解技术没有考虑到用户评分之间的差异性,针对上述问题在矩阵分解的基础上,提出差值矩阵分解模型。算法将每个用户对物品的评分减去与其社会属性相似用户对该物品评分的平均分,得到一个差值矩阵,然后对差值矩阵进行分解。在Movielens 1M数据集的实验结果表明,该算法的预测精度较贝叶斯概率矩阵分解、矩阵分解、融合用户属性的隐语义模型都有较为明显的提升。 Matrix factorization has become a common way to predict user ratings of items.Traditional matrix factorization algorithms do not take account of the differences between users.To address this problem,a difference value(D-value)matrix factorization model is proposed.First,for each user,the difference between his/her rating score and the average rating score from users with similar social attributes is calculated,which finally results in a matrix called D-value matrix.Then the D-value matrix is factorized to calculate the predicted ratings.Experimental results on the Movielens1M dataset show that the proposed method significantly outperforms Bayesian probabilistic matrix factorization,matrix factorization and the latent factor model fused with user attributes in terms of prediction accuracy.
作者 成鹏 刘文斌 CHENG Peng;LIU Wen-bin(College of Mathematics,Physics and Electronic Information Engineering,Wenzhou University,Wenzhou 325035,China)
出处 《计算机与现代化》 2018年第3期69-72,77,共5页 Computer and Modernization
基金 国家自然科学基金资助项目(60970065 61272018 61572367)
关键词 推荐算法 矩阵分解 差值矩阵分解 recommendation algorithms matrix factorization D-value matrix factorization
  • 相关文献

参考文献2

二级参考文献15

  • 1Mnih A, Salakhutdinov R. Probabilistic matrix factorization. Advances in Neural Information Processing Systems, 2007.
  • 2Wu L, Chen E, Liu Q, et al neighborhood-aware probabilistic Leveraging tagging for matrix factorization. Procof the 2lst ACM International Conference on Information and Knowledge Management. ACM. 2012. 1257-1264.
  • 3Koren Y. The BellKor solution to the Netflix grand prize. Nefflix Prize Documentation, 2009.
  • 4Salakhutdinov R, Mnih A. Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. Proc. of the Twenty Fifth International Conference Machine Learning. Helsinki Finland. June 5-9, 2008. 880-887.
  • 5Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems. Computer, 2009, 42(8): 30-37.
  • 6Ma H, Yang H, Lyu M. SoRec: Social recommendation using probabilistic matrix factofization. Proc. of the 17th Acm Conference on Information and Knowledge Management. California Usa. October 26-30, 2008.931-940.
  • 7Shan H, Banerjee A. Generalized probabilistic matrix factorizations for collaborative filtering. 2010 IEEE 10th International Conference on Data Mining (ICDM). IEEE. 2010. 1025-1030.
  • 8Hernandezlobato J, Houlsby N, Ghahramani Z. Probabilistic Matrix factorization with non-random missing data. Proc. of the 31st International Conference on Machine Learning. 2014.
  • 9Lawrence N D, Urtasun R. Non-linear matrix factorization with Gaussian processes. International Conference on Machine Learning. 2009.
  • 10张新猛,蒋盛益.基于加权二部图的个性化推荐算法[J].计算机应用,2012,32(3):654-657. 被引量:33

共引文献19

同被引文献23

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部