期刊文献+

一种结合颜色纹理直方图的改进型Camshift目标跟踪算法 被引量:7

An Improved Camshift Target Tracking Algorithm Based on Joint Color-Texture Histogram
下载PDF
导出
摘要 针对背景中存在颜色相近目标或目标被遮挡时Camshift算法跟踪失败的问题,提出了一种改进的Camshift目标跟踪算法。首先,改进算法模型直方图的计算选用颜色和纹理相融合的直方图概率分布,解决了Camshift算法只使用单一的颜色模型、很难适应物体大范围运动造成的背景变化或遮挡的不足;其次,图像权值采用目标模型与目标候选模型特征概率之比的平方根来计算,并用权值进一步估计目标的位置和方向,克服了原始Camshift算法中图像权值仅依靠目标模型计算的不足,大大减少了背景特征对跟踪的影响;最后,利用粒子滤波对运动目标状态进行估计,以克服目标运动引起的遮挡、交错或重叠,进而提高目标位置跟踪精度。实验结果表明,改进算法的平均每帧成功率达到50%以上,平均中心位置误差低于20%。改进算法能有效改善目标跟踪性能,从而实现目标跟踪的有效性、准确性。 In order to solve the problem of tracking failure when the target is near the background color or the target is occluded,an improved Camshift target tracking algorithm is proposed in this paper.First,the calculation of histogram for the improved algorithm model used the probability distribution histogram with the fusion of color and texture and hence it solved the problem that using a single color model is difficult to adapt to the change of background objects caused by large range of motion and occlusion.Secondly,the weight image can be calculated from the square root of the ratio of the feature probability of target model to that of candidate target model.The calculated weight was used to further estimate the position and direction of the target.It overcomes the shortcomings of the original Camshift algorithm that only relies on the target model in the calculation of weight image and greatly reduces the influence of background features on tracking.At last,the state of moving object is estimated by particle filter to overcome the occlusion,interleaving or overlap,and then the tracking accuracy of target position is improved.The average success rate of the improved algorithm is more than50%,and the average central position error is less than20%.Experimental results showed that the algorithm can obviously improve the performance of target tracking,and achieve the target tracking effectively and accurately.
作者 初红霞 谢忠玉 王科俊 CHU Hongxia;XIE Zhongyu;WANG Kejun(College of Automation, Harbin Engineering University, Harbin 150001, China;College of Electrical and Information Engineering, Heilongjiang Institute of Technology, Harbin 150001, China)
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2018年第3期145-152,共8页 Journal of Xi'an Jiaotong University
基金 哈尔滨市科技局科技创新人才研究专项资金资助项目(2017RAQXJ134) 国家自然科学基金资助项目(61573114) 黑龙江省自然科学基金资助项目(A201418 QC2011C060) 黑龙江省教育厅青年学术骨干支持计划资助项目(UNPYSCT-2015102)
关键词 CAMSHIFT算法 粒子滤波 颜色-纹理直方图 目标跟踪 Camshift algorithm particle filtering color-texture histogram target tracking
  • 相关文献

参考文献2

二级参考文献15

  • 1辛云宏,杨万海.基于伪线性卡尔曼滤波的两站红外无源定位及跟踪技术[J].西安电子科技大学学报,2004,31(4):505-508. 被引量:10
  • 2ROSS D A, LIM J, LIN R S, et al. Incremental learning for robust visual tracking[ J]. International Journal of Computer Vision, 2008, 77(1-3) : 125-141.
  • 3KWON J, LEE K M. Visual tracking decomposition [ C ]//2010 IEEE Conference on Computer Vision and Pattern Rec- ognition (CVPR). San Francisco,USA, 2010 : 1269-1276.
  • 4GRABNER H, GRABNER M, BISCHOF H. Real-time tracking via on-line boosting[ C]//Proceedings of BMVC. Edinburgh, 2006: 47-56.
  • 5GRABNER H, LEISTNER C, BISCHOF H. Semi-super- vised on-line boosting for robust tracking [ M]//Computer Vision-ECCV 2008. Berlin: Springer, 2008: 234-247.
  • 6BABENKO B, YANG M H, BELONGIE S. Robust object tracking with online multiple instance learning [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8) : 1619-1632.
  • 7ZHANG K, ZHANG L, YANG M H. Real-time compressive tracking[ C]//European Conference on Computer Vision. Florence, Italy, 2012: 864-877.
  • 8MEI Xue, LING Haibin. Robust visual tracking and vehicle classification via sparse representation [J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 2011, 33 ( 11 ) : 2259-2272.
  • 9MEI Xue, LING Haibin, WU Yi, et al. Minimum error bounded efficient tracker with occlusion detection [C]//2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Colorado Springs, USA, 2011 : 1257 - 1264.
  • 10LI H, SHEN C, SHI Q. Real-time visual tracking using compressive sensing [ C ]//2011 IEEE Conference on Com- puter Vision and Pattern Recognition (CVPR). Colorado Springs, USA, 2011: 1305-1312.

共引文献7

同被引文献44

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部