摘要
给出了多参数布朗运动驱动的随机微分方程在飘逸系数满足非连续性条件和扩散系数满足某种非Lipschitz条件下解的存在性定理。为此,利用截断和罚则函数法给出了非Lipschitz条件下方程解的比较性定理。最后利用Lipschitz函数逼近的方法给出了连续性飘逸系数满足线性增长条件下解的存在性定理。
The first aim of this paper is to derive an existence theorem of solutions to stochastic differential equations driven by multi-parameter Brownian motions when the drift coefficient is not continuous and the diffusion coefficient satisfies some non-Lipschitz condition.In doing so,we first obtain a comparison result of the solutions under some non-Lipschitz conditions on the coefficients by means of truncation and penalization method.With the aid of approximation of function satisfying linear growth condition by means of a series of Lipschitz functions,we obtain another existence result
作者
何世峰
HE Shi-feng(Hefei Technology College, Chaohu 238000, China)
出处
《安徽师范大学学报(自然科学版)》
CAS
2018年第1期11-14,共4页
Journal of Anhui Normal University(Natural Science)
基金
安徽省教育厅重点研究项目(SK2017A0767)
关键词
随机微分方程
多参数布朗运动
不连续飘逸系数
stochastic differential equations
multi-parameter Brownian motion
discontinuous drift coefficient