期刊文献+

基于地铁自动售票口的人群密度检测及预警 被引量:1

People Density Detection and Early Warning Based on Subway Automatic Ticket Port
下载PDF
导出
摘要 地铁自动售票机的普及方便了人们购票,但售票机前拥挤的人群给地铁站安全带来了巨大的隐患,对自动售票口人群密度的检测及预警非常有必要。基于地铁人群密度大,人群遮挡且滞留严重的特点,提出了一种快速实时检测预警方法。先对全场景进行透视矫正划分检测子区域,如果子区域前景像素数超过设定阈值,则对该子区域使用纹理特征估计人群密度,当多个子区域被估计为高密度等级时,则发出预警。实验结果及现场应用表明,这种方法简单有效,能够实时检测售票口的人群密度并能准确做出预警,指导管理人员疏散人群。 The popularity of subway automatic ticket machines is convenient for people to buy tickets,but the crowded crowd before the ticket machine has brought great risks to the subway security,people density detection and early warning of the automatic ticket port is necessary.Based on the large density,serious stranded and severe blockage characteristics of the subway,a fast real-time detection and early warning method is proposed.First,the video is perspective corrected and divides the detection sub-region,if the sub-region foreground pixel numbers exceed the set threshold,the sub-region uses the texture feature to estimate the people density,and when multiple sub-regions are estimated to be high-density levels,an alert is issued.Experimental results and field applications show that this method is simple and effective.Able to detect the people density of the ticket port in real time and can accurately make early warning to guide the evacuation of the crowd.
作者 王宗贤 汪林 完颜勇 WANG Zongxian;WANG Lin;WAN Yanyong(Beijing Key Lab of Urban Intelligent Traffic Control Technology,North China University of Technology,Beijing 100144;Key Laboratory of Intelligent Transportion Systems Technologies,Beijing 100144)
出处 《计算机与数字工程》 2018年第3期523-527,532,共6页 Computer & Digital Engineering
基金 智能交通技术交通行业重点实验室开放课题"开放式的交通控制器架构体系研究" 科技创新服务能力建设-科技成果转化-提升计划项目-基于交通大数据的北京道路交通疏堵决策支持系统研发(市级)(编号:PXM2016_014212_000036 PXM2016_014212_000030)资助
关键词 人群密度检测 支持向量机 纹理分析 灰度共生矩阵 crowd density estimation,support vector machine,texture analysis,gray-level Co-occurrence matrix
  • 相关文献

参考文献3

二级参考文献22

  • 1Sime J D. Crowd psychology and engineering[ J]. Safety Science, 1995,21(1) :1 -14.
  • 2Davies A C, Yin J H, Velastin S A, et al. Crowd monitoring using image processing [ J ]. IEE Electronics and Communication Engineering Journal, 1995,7( 1 ) :37 -47.
  • 3Velastin S A, Yin J H, Davies A C, et al. Automated measurement of crowd density and motionusing image processing[ A]. Proc. 7th IEE Inl Conf. on Road Traffic Monitoring and Control, London, 1994:127 -132.
  • 4Marana A N, Velastin S A, Costa L F, et al. Automatic estimation of crowd density using texture [ J ]. Safety Science, 1998,28 ( 3 ) : 165 -175.
  • 5Haralick R M. Statistical and structural approaches to texture [ A ].Proc IEEE, 1979,67 ( 5 ) :786 - 804.
  • 6Marana A N,Costa L F,Lotufo B A,et al. On the efficacy of texture analysis for crowd monitoring[ A ]. International Symposium on Computer Graphics, Image Processing and Vision, 1998 : 354 - 361.
  • 7Marana A N, Costa L F, Lotufo B A, et al. Estimating crowd density with minkowski fractal dimension [ A ]. IEEE International Conferenceon Acoustics, Speech, and Signal Processing, 1999:3521 - 3524.
  • 8Terada K, Yoshida D, Oe S, et al. A method of counting the passing people by using the stereo images[ A]. Preoeedings of the 1999 IEEE International Conference on Image Processing, Japan, 1999 : 338 -342.
  • 9Schofield A J, Stonham T J, Mehta P A. A ram based neural network approach to people counting[A]. Proceedings 5th. Int. Conference On Image Processing And Its Applications, 1995:652 -656.
  • 10Schofield A J, Mehta P A, Stonham T J. A system for counting peoplein video images using neural networks to identify the background scene [ J ]. Pattern Recognition, 1996,29 ( 8 ) : 1421 - 1428.

共引文献2430

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部