期刊文献+

基于Android恶意软件检测技术的研究 被引量:1

Detection Technology Research of Malware Based on Android
下载PDF
导出
摘要 近年来,随着Android智能终端的普及,人们在享受其所带来的便利的同时,也越来越多的受到各类恶意软件的攻击。因此,为了减小用户遭受威胁的可能性,论文就恶意吸费、隐私窃取及资费消耗这三类软件进行研究,提出一种基于混合特征的Android恶意软件检测方法,结合动态检测方法和静态检测方法,构造出一种混合特征集,然后选用多种分类算法对该混合特征集进行分类,根据比较结果,选定一种最优的分类方法,提高用户使用软件的安全性。通过实验仿真,结果表明该方法在恶意软件检测中应用效果良好。 In recent years,with the popularity of Android intelligent terminal,people enjoy the convenience brought by it.But at the same time,more and more intelligent terminals attack by various types of malicious software.Therefore,in order to reduce the possibility of the user being threatened,this subject focuses on three kinds of software,malicious charges,privacy stealing and consumption.This paper proposes a detection method of Android malware based on mixed features.This method combines dynamic detection method and static detection method to construct a mixed feature set.And then use a variety of classification algorithms for classification of the mixed feature set.According to the comparison result,an optimal classification method is selected to improve the security of the software.The simulation results show that the proposed method is effective in malware detection.
作者 田瑞凡 刘钊远 TIAN Ruifan;LIU Zhaoyuan(School of Computer,Xi'an University of Posts and Telecommunications,Xi'an 710061)
出处 《计算机与数字工程》 2018年第3期556-560,579,共6页 Computer & Digital Engineering
关键词 Android恶意软件 静态检测 动态检测 混合特征 分类算法 Android malware,static detection,dynamic detection,mixed feature set,classification algorithm
  • 相关文献

参考文献5

二级参考文献46

  • 1夏克俭,张涛.基于贝叶斯算法的垃圾邮件过滤的研究[J].微计算机信息,2008,24(9):179-180. 被引量:5
  • 2Sebastian F. Machine learning in automated text categorization [J] . ACM Computing Surveys, 2002, 34 (1): 1-47.
  • 3余芳.一个基于朴素贝叶斯方法的web文本分类系统:webCAT[D].广州:暨南大学,2004.
  • 4王俊英.基于科技文献的中文文本分类算法研究[D].秦皇岛:燕山大学,2005.
  • 5复旦大学语料库.中文自然语言处理开放平台[DB/OL].http://ishare.iask.sina.com.cn.ht,2008-09-12.
  • 6网秦.2013年上半年网秦全球手机安全报告[R/OL].[2013-07-23].http://cn.nq.com/neirong/2013Q2.pdf.
  • 7JIANG X,ZHOU Y.A survey of Android malware[M].New York:Springer,2013:3-20.
  • 8SCHMIDT A D,BYE R,SCHMIDT H G,et al.Static analysis of executables for collaborative malware detection on Android[C]//Proceedings of the 2009 IEEE International Conference on Communications.Piscataway:IEEE Press,2009:631-635.
  • 9BURGUERA I,ZURUTUZA U,NADJM-TEHRANI S.Crowdroid:behavior-based malware detection system for Android[C]//Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices.New York:ACM,2011:15-26.
  • 10CHIANG H S,TSAUR W.Mobile malware behavioral analysis and preventive strategy using ontology[C]//Proceedings of the 2010IEEE Second International Conference on Social Computing.Piscataway:IEEE Press,2010:1080-1085.

共引文献48

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部