摘要
深度学习在流程工业的软测量领域已经得到了应用。然而,深度神经网络(DNN)的结构和参数需要人工调整,这需要扎实的机器学习知识基础和丰富的参数调整经验,烦琐的调整过程限制了深度学习在化工领域的推广应用。在大量实验的基础上,对DNN的每个关键参数的选取过程进行了系统化的分析,提出了几乎无须人工干预的基于DNN软测量的结构和参数自动调整方法,极大地简化了参数调整过程,能够给工程技术人员学习及应用深度学习提供参考。对原油蒸馏装置及煤气化装置的案例分析验证了所提出方法的有效性和通用性。
Deep learning has been applied to the field of soft sensing in process industries.However,the structureand parameters of deep neural network(DNN)have to be tuned manually,which require solid fundamentalknowledge about machine learning and rich experiences on parameters tuning.Complicated tuning procedurerestricts generalization application of deep learning in chemical industries.A structure and parameters tuning methodfor DNN soft sensor with little manual intervention was proposed by systematic analysis on selection process ofeach essential DNN parameter from massive experiments.The presented method could greatly simplify the tuningprocedure and offer a reference for engineers to study and use deep learning.Studies on crude-oil distillation andcoal gasification process verified effectiveness and generality of the proposed method.
作者
王康成
尚超
柯文思
江永亨
黄德先
WANG Kangcheng;SHANG Chao;KE Wensi;JIANG Yongheng;HUANG Dexian(1Department of Automation, Tsinghua University, Beijing 100084, China;Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China)
出处
《化工学报》
EI
CAS
CSCD
北大核心
2018年第3期900-906,共7页
CIESC Journal
基金
国家自然科学基金项目(61673236
61433001)
欧盟第七框架计划项目(P7-PEOPLE-2013-IRSES-612230)~~
关键词
深度学习
预测
参数调整
算法
神经网络
deep learning
prediction
parameter tuning
algorithm
neural network