期刊文献+

基于双变结构滤波的动力锂电池SOC估算方法

Dual variable-structure filter-based SOC estimation method for lithium-ion power battery
下载PDF
导出
摘要 电池荷电状态(SOC)是动力电池的重要参数,提出了双变结构滤波算法,实现动力锂电池SOC的高精度估算。采用一个变结构滤波对电池Thevenin模型进行参数辨识与高阶多项式对OCV-SOC非线性特性进行建模;虽然变结构滤波估算SOC时能有效保证收敛,为了进一步提高变结构滤波SOC估算精度,对另一个变结构滤波参数进行模糊化处理,提高变结构滤波自适应性,提出了模糊-变结构滤波算法,实现SOC状态的精确估算。基于Arbin电池测试平台,仿真结果表明所提出的双变结构滤波能有效提高SOC估算精度,其SOC估算的最大绝对误差1.50%,平均绝对误差0.09%。 State of charge(SOC)is one of the most important parameters for electric vehicle power battery.The dual variable-structure filter algorithm was presented to estimate SOC for lithium-ion power battery.One variable-structure filter was used for parameter identification of Thevenin battery model and capturing the nonlinear characteristics between OCV and SOC model by high-order polynomial.Although the variable structure filter could effectively guarantee the convergence of SOC estimation,the parameters should be fuzzed to improve the accuracy of SOC estimation and its adaptive ability.Therefore,the fuzzy variable-structure filter algorithm was proposed to accurately estimate the battery SOC.The test performed in the Arbin test platform show that the dual variable-structure filter can effectively improve the SOC estimation accuracy with the maximum error of 1.50%and the average absolute error of 0.09%.
作者 党选举 李爽 姜辉 伍锡如 李珊 DANG Xuan-ju;LI Shuang;JIANG Hui;WU Xi-ru;LI Shan(School of Electronic and Automation,Guilin University of Electronic Technology,Guilin Guangxi 541004,China)
出处 《电源技术》 CAS CSCD 北大核心 2018年第3期353-356,共4页 Chinese Journal of Power Sources
基金 国家自然科学基金(61263013) 广西信息科学实验中心项目(20130110) 广西自然科学基金(2014GXNSFBA118275 2015GXNS FAA139297) 智能综合自动化高校重点实验室基金资助(2016)
关键词 动力电池 荷电状态 变结构滤波 模糊-变结构滤波 power battery state of charge variable structure filter fuzzy variable structure filter
  • 相关文献

参考文献2

二级参考文献12

  • 1邵海岳,钟志华,何莉萍,钟勇,陈宗璋.电动汽车动力电池模型及SOC预测方法[J].电源技术,2004,28(10):637-640. 被引量:22
  • 2GOULD C R,BINGHAM C M,STONE D A. New battery model and state-of-health determination through subspace parameter estimation and state-observer technique[J].{H}IEEE Transactions on Vehicular Technology,2009,(8):3905-3916.
  • 3CHENG K W E,DIVAKAR B P,WU H J. Battery-Management System (BMS) and SOC development for electrical vehicles[J].IEEE Trans Veh Teclmol,2011,(1):76-88.
  • 4SZUMANOWSKI A,CHANG Y. Battery management system based on battery nonlinear dynamics modeling[J].{H}IEEE Transactions on Vehicular Technology,2008,(3):1425-1432.
  • 5GREGORY L P. LiPB dynamic cell models for Kalman-filter SOC estimation[A].Busan:EVS,2002.193.
  • 6WELCH G,BISHOP G. An introduction to the Kalman filter[A].2001.
  • 7PADHI A K, NAJUNDASWAMY K S, GOODENOUGH J B. Phosopho-olivines as positive electrode materials for rechargeable lithium batteries[J]. J Electrochem Soc, 1997, 144(4): 1188-1192.
  • 8CHUNG S Y, BLOKING J T,CHIANG Y M. Electronically conduc- tive phospho-olivines as lithium storage electrodes [J].Nature Ma- terials, 2002, 123(1): 123-128.
  • 9CHEN M, GABRIEL A, MORA R.Accurate electrical battery model capable of predicting run time and I=V performance[J]. IEEE Trans- ations on Energy Conversion, 2006, 21(2): 504-511.
  • 10钱良国,郝永超,肖亚玲.锂离子等新型动力蓄电池成组应用技术和设备研究最新进展[J].机械工程学报,2009,45(2):2-11. 被引量:31

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部