摘要
电池荷电状态(SOC)是动力电池的重要参数,提出了双变结构滤波算法,实现动力锂电池SOC的高精度估算。采用一个变结构滤波对电池Thevenin模型进行参数辨识与高阶多项式对OCV-SOC非线性特性进行建模;虽然变结构滤波估算SOC时能有效保证收敛,为了进一步提高变结构滤波SOC估算精度,对另一个变结构滤波参数进行模糊化处理,提高变结构滤波自适应性,提出了模糊-变结构滤波算法,实现SOC状态的精确估算。基于Arbin电池测试平台,仿真结果表明所提出的双变结构滤波能有效提高SOC估算精度,其SOC估算的最大绝对误差1.50%,平均绝对误差0.09%。
State of charge(SOC)is one of the most important parameters for electric vehicle power battery.The dual variable-structure filter algorithm was presented to estimate SOC for lithium-ion power battery.One variable-structure filter was used for parameter identification of Thevenin battery model and capturing the nonlinear characteristics between OCV and SOC model by high-order polynomial.Although the variable structure filter could effectively guarantee the convergence of SOC estimation,the parameters should be fuzzed to improve the accuracy of SOC estimation and its adaptive ability.Therefore,the fuzzy variable-structure filter algorithm was proposed to accurately estimate the battery SOC.The test performed in the Arbin test platform show that the dual variable-structure filter can effectively improve the SOC estimation accuracy with the maximum error of 1.50%and the average absolute error of 0.09%.
作者
党选举
李爽
姜辉
伍锡如
李珊
DANG Xuan-ju;LI Shuang;JIANG Hui;WU Xi-ru;LI Shan(School of Electronic and Automation,Guilin University of Electronic Technology,Guilin Guangxi 541004,China)
出处
《电源技术》
CAS
CSCD
北大核心
2018年第3期353-356,共4页
Chinese Journal of Power Sources
基金
国家自然科学基金(61263013)
广西信息科学实验中心项目(20130110)
广西自然科学基金(2014GXNSFBA118275
2015GXNS FAA139297)
智能综合自动化高校重点实验室基金资助(2016)
关键词
动力电池
荷电状态
变结构滤波
模糊-变结构滤波
power battery
state of charge
variable structure filter
fuzzy variable structure filter