期刊文献+

多孔NiCo_2O_4的合成、表征及其超电容性质研究

Synthesis and characterization of porous NiCo_2O_4 and its supercapacitor properties
下载PDF
导出
摘要 采用化学均相沉淀法并进行后期热处理,制备出了NiCo_2O_4双金属氧化物纳米材料;场发射电镜(FESEM)显示其微观结构是由大量超薄纳米片自组装形成的蜂窝状多孔结构,这种结构为电极反应提供了巨大的反应界面和更多的电化学反应活性点,十分有利于赝电容的形成;将其制成电极进行电化学测试,结果表明其具有较好的倍率特性、很高的循环稳定性和较高的比电容,在电流密度为8 A/g时,比电容达到了458.8 F/g,展现出了良好的超电容性能。 The NiCo2O4 bimetallic oxide nano materials were prepared by chemical homogeneous precipitation method and post heat treatment.The field emission scanning electron microscope(FESEM)test shows that the microstructure is a porous honeycomb structure,self-assembled by a large number of ultrathin nanosheets.This structure for electrode reaction provides a huge reaction interface and more active sites for electrochemical reactions;it is conducive to the formation of pseudo capacitance.The electrochemical tests show that it has high rate characteristics,high cycle stability and high specific capacitance.When the current density is 8 A/g,the specific capacitance is up to 458.8 F/g,showing a good super-capacitive property.
作者 王耀先 孙彦伟 贺国旭 WANG Yao-xian;SUN Yan-wei;HE Guo-xu(Department of Chemical and Environmental Engineering,Pingdingshan University,Pingdingshan Henan 467000,China;China Pingmei Shenma Group Engineering Plastics Co.,Ltd.,Pingdingshan Henan 467000,China)
出处 《电源技术》 CAS CSCD 北大核心 2018年第3期416-418,共3页 Chinese Journal of Power Sources
关键词 NiCo2O4 超电容性能 化学均相沉淀法 电极材料 比电容 NiCo2O4 super-capacitive properties chemical homogeneous precipitation electrode material specific capacitance
  • 相关文献

参考文献1

二级参考文献26

  • 1Chen, Y. L.; Hu, Z. A.; Chang, Y. Q.; Wang, H. W.; Zhang, Z. Y.; Yang, Y. Y.; Wu, H. Y. J. Phys. Chem. C 2011,115,2563. doi: 10.1021/jp 109597n.
  • 2Wang, H. W.; Hu, Z. A.; Chang, Y. Q.; Chen, Y. L.; Wu, H. Y.; Zhang, Z. Y.; Yang, Y. Y. J. Mater. Chem. 2011, 21, 10504. doi: 10.1039/c1jm10758e.
  • 3Guan, C.; Li, X; Wang, Z.; Cao, X; Soci, C.; Zhang, H.; Fan, H. J. Adv. Mater. 2012,24,4186. doi: 10.1002/adma.201104295.
  • 4Wang, H.; Casalongue, H. S.; Liang, Y.; Dai, H. J. Am. Chem. Soc. 2010, 132, 7472. doi: 10.1021/jal02267j.
  • 5Jiang, H.; Ma, J.; Li, C. Chem. Commun. 2012,48,4465. doi: 10.1039/c2cc31418e.
  • 6Wu, Z. S.; Wang, D. W.; Ren, W.; Zhao, J.; Zhou, G.; Li, F.; Cheng, H. M.Adv. Funct. Mater. 2010, 20, 3595. doi: 10.1002/ adfm.v20:20.
  • 7Bi, R R; Wu, X. L.; Cao, F. F.; Jiang, L. Y.; Guo, Y. G.; Wan, L. J. J. Phys. Chem. C2010, 114, 2448. doi: 10.1021/jp9116563.
  • 8Wang, H.; Wang, Y.; Wang, X. Electrochem. Commun. 2012, 18, 92. doi: 10.1016/j.elecom.2012.02.023.
  • 9Wang, H. W.; Hu, Z. A.; Chang, Y. Q.; Chen, Y. L.; Zhang, Z. Y.; Yang, Y. Y.; Wu, H. Y. Mater. Chem. Phys. 2011, 130, 672. doi: 10.1016/j.matchemphys.2011.07 .043.
  • 10Gujar, T. P.; Shinde, V. R.; Lokhande, C. D.; Han, S. H. J. Power Sources 2006, 161, 1479. doi: 10. 1016/j.jpowsour. 2006.05.036.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部