期刊文献+

修剪型神经网络在锚杆锚固缺陷识别中的应用 被引量:3

Application of pruning type neural network in defect identification of blot anchoring systems
下载PDF
导出
摘要 锚杆在桥梁、隧道、建筑等方面应用越来越广泛。在施工的过程中,由于地质条件、材料和施工等因素的影响,锚固系统会产生许多缺陷。这些缺陷都会对锚杆的寿命和安全性能造成影响,所以对锚杆的缺陷识别是一项很有价值的研究。人工神经网络作为一个智能的分类器,可以对锚杆的缺陷进行识别分类,提出一种自适应阈值前馈神经网络修剪算法,其实质是通过判断隐含层神经元在学习过程中对输出的贡献值,利用显著性指数作为指标来删除网络中的冗余节点,实现网络结构的动态优化调整。结果表明,该方法能够降低网络结构的复杂度,同时提高了锚杆缺陷分类识别的精度。 Rock bolts are widely applied in bridges,tunnels,and buildings etc.In construction processes,due to influences of geological conditions,materials,architectures and other factors,there are many defects in anchoring systems.All these defects affect the life and safety of rock bolts,so it is very valuable to identify defects of anchor bolts.Artificial neural network can be used as an intelligent classifier to identify and classify defects of anchor bolts.Here,an adaptive threshold feed-forward neural network pruning algorithm was proposed,its essence was to judge the contribution value of hidden layer neurons in their learning processes to output,take the significant exponent as an index to delete redundant nodes of the network,and realize dynamic optimization and adjustment of the network structure.The simulation results showed that the proposed method can not only reduce the complexity of the network structure,but also improve classification and identification accuracies of anchor bolt defects.
作者 孙晓云 吴世星 韩广 田军 成琦 SUN Xiaoyun;WU Shixing;HAN Guang;TIAN Jun;CHENG Qi(School of Electrical and Electronic Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China;Hebei Provincial Development and Reform Commission, Shijiazhuang 050043, China)
出处 《振动与冲击》 EI CSCD 北大核心 2018年第5期221-227,共7页 Journal of Vibration and Shock
基金 国家自然科学基金(51674169 51274144) 河北省自然科学基金资助(E2014210075)
关键词 锚杆 锚杆缺陷 神经网络 修剪算法 rock bolt anchor bolt defects neural network pruning algorithm
  • 相关文献

参考文献12

二级参考文献53

  • 1张发明,刘宁,赵维炳.岩质边坡预应力锚固的力学行为及群锚效应[J].岩石力学与工程学报,2000,19(z1):1077-1080. 被引量:59
  • 2李志辉,李亮,李建生.应力波法锚杆无损检测技术研究[J].西部交通科技,2007(6):62-65. 被引量:3
  • 3雷晓燕,杜庆华.接触摩擦单元的理论及其应用[J].岩土工程学报,1994,16(3):23-32. 被引量:87
  • 4Y Le Curl,J S Denker, S A Solla. Optimal brain damage[A]. Advances in Neural Information Processing Systems[ C ]. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc, 1990, 2: 598 - 605.
  • 5B Hassibi, D G Stork. Second-order derivatives for network pruning:optimal brain surgeon[ A] .Advances in Neural Informarion Processing Systems[ C]. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc,1993,5:164- 171.
  • 6T Cibas, F F Soulie, P Gallinari, S Raudys. Variable selection with neural networks [ J ]. Neurocomputing, 1996, 12 ( 2 - 3 ) : 223- 248.
  • 7M E Ricotti, E Zio. Neural network approach to sensitivity and uncertainty analysis [ J ]. Reliability Engineering and System Safety, 1999,64(1) :59 - 71.
  • 8Saltelli S Tarantola, K-S Chan. A quantitative model independent method for global sensitivity analysis of model output[ J]. Technometrics, 1999,41 ( 1 ) : 39 - 56.
  • 9Philippe Lauret,Eric Fock, Thierry Alex Mara. A node pruning algorithm based on a Fourier amplitude sensitivity test method [ J ]. IEEE Transactions on Neural Networks, 2006, 17 (2) : 273 - 293.
  • 10R I Cukier, C M Fortuin, K E Shuler, A G Petscheck, J H Schaibly. Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients [J]. Journal of Chemical Physics, 1973,59 (8) : 3873 - 3878.

共引文献246

同被引文献71

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部