期刊文献+

基于粗糙集与熵的铁路货物周转量预测 被引量:2

Forecasting railway freight turnover based on rough set and entropy
下载PDF
导出
摘要 采用简单熵计算方法对原始数据进行离散,得出决策信息系统。运用粗糙集方法对货物周转量的影响因素进行约简,将约简后条件属性作为解释变量,构建货物周转量多元线性回归模型,运用Eviews软件标定参数,同时对模型的回归显著性进行检验。以2013~2015年货物周转量为例进行预测,得出货物周转量的增长率分别为1.9%,1.0%和-3.8%,周转量分别为29 746.26,30 054.87和29 812.16亿t?km,与实际数据相对吻合度平均为89.05%,表明预测方法具有一定的可靠性。 The simple entropy calculation method was used to discretize the original data,and the decision information system was obtained.The rough set was used to reduce the influencing condition attributes of freight turnover.The rest attributes were taken as explanatory variables,and the explanatory variables and freight turnover were used to establish multiple linear regression model.By using Eviews software to calibrate parameters,the regression significance of the model was tested concurrently.The goods turnover during 2013?2015 was taken as an example to forecast.The predicted growth rate values of goods turnover are 1.9%,1.0%and?3.8%,respectively,whereas the turnover values of goods are 29 746.26,30 054.87 and 29 812.16 tons kilometers,respectively.The average degree of agreement with the actual data is 89.05%,which indicates that the method has certain reliability.
作者 杨丽蓉 吕红霞 YANG Lirong;LüHongxia(School of Transportation and Logistics,Southwest Jiaotong University Chengdu 610031,China;National Railway Train Diagram Research and Training Center,Chengdu 610031,China;National and Local Joint Engineering Laboratory of Comprehensive Intelligent Transportation,Southwest Jiaotong University,Chengdu 610031,China)
出处 《铁道科学与工程学报》 CAS CSCD 北大核心 2018年第3期778-784,共7页 Journal of Railway Science and Engineering
基金 国家重点研发计划资助项目(2017YFB1200702 2016YFC0802208) 国家自然科学基金资助项目(61703351) 中国铁路总公司科技研究计划资助项目(2016X006-D) 四川省科技计划资助项目(2017ZR0149 2017RZ0007) 中央高校基本科研业务费专项资金资助项目(2682017ZDPY 04 2682017CX022 2682017CX018)
关键词 铁路运输 货物周转量 预测 简单熵 属性重要性 多元线性回归 railway transportation freight turnover forecasting simple entropy attribute importance multiple linear regression
  • 相关文献

参考文献8

二级参考文献39

共引文献39

同被引文献14

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部