期刊文献+

集值向量优化问题的Henig有效解的最优条件

Optimal Conditions for Henig Efficient Solution of Set-valued Vector Optimization Problem
下载PDF
导出
摘要 为了在实拓扑向量空间中研究集值向量优化问题的Henig有效性,借助相依上图导数和广义锥-凸集值映射的概念,讨论集值向量优化问题的Henig有效解与向量变分不等式的Henig有效解之间的关系。结果表明,在广义锥-凸集值映射下,集值向量优化问题的Henig有效解与向量变分不等式的Henig有效解是一致的。 To study the Henig efficiency of set-valued vector optimization problem in real topological vector space,the relationship between Henig efficient solution for set-valued vector optimization problem and vector variational inequality was discussed by using the concepts of contingent epiderivative and generalized cone-convex set-valued mapping.The results show that under the generalized cone-convex set-valued mapping,the Henig efficient solution to set-valued vector optimization problem and vector variational inequality is consistent.
作者 胡艳梅 王三华 HU Yanmei;WANG Sanhua(College of Science and Engineering, East China Jiaotong University, Nanchang 330100, China;Department of Mathematics, Nanchang University, Nanchang 330031, China)
出处 《济南大学学报(自然科学版)》 CAS 北大核心 2018年第2期161-165,共5页 Journal of University of Jinan(Science and Technology)
基金 国家自然科学基金项目(11661055)
关键词 相依上图导数 广义锥-凸集值映射 HENIG有效解 集值向量优化问题 向量变分不等式 contingent epiderivative generalized cone-convex set-valued mapping Henig efficient solution set-valued vector optimization problem vector variational inequality
  • 相关文献

参考文献6

二级参考文献16

共引文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部