摘要
为了在实拓扑向量空间中研究集值向量优化问题的Henig有效性,借助相依上图导数和广义锥-凸集值映射的概念,讨论集值向量优化问题的Henig有效解与向量变分不等式的Henig有效解之间的关系。结果表明,在广义锥-凸集值映射下,集值向量优化问题的Henig有效解与向量变分不等式的Henig有效解是一致的。
To study the Henig efficiency of set-valued vector optimization problem in real topological vector space,the relationship between Henig efficient solution for set-valued vector optimization problem and vector variational inequality was discussed by using the concepts of contingent epiderivative and generalized cone-convex set-valued mapping.The results show that under the generalized cone-convex set-valued mapping,the Henig efficient solution to set-valued vector optimization problem and vector variational inequality is consistent.
作者
胡艳梅
王三华
HU Yanmei;WANG Sanhua(College of Science and Engineering, East China Jiaotong University, Nanchang 330100, China;Department of Mathematics, Nanchang University, Nanchang 330031, China)
出处
《济南大学学报(自然科学版)》
CAS
北大核心
2018年第2期161-165,共5页
Journal of University of Jinan(Science and Technology)
基金
国家自然科学基金项目(11661055)
关键词
相依上图导数
广义锥-凸集值映射
HENIG有效解
集值向量优化问题
向量变分不等式
contingent epiderivative
generalized cone-convex set-valued mapping
Henig efficient solution
set-valued vector optimization problem
vector variational inequality