期刊文献+

Alternative techniques for forecasting mineral commodity prices 被引量:1

Alternative techniques for forecasting mineral commodity prices
下载PDF
导出
摘要 Forecasting mineral commodity(MC) prices has been an important and difficult task traditionally addressed by econometric, stochastic-Gaussian and time series techniques. None of these techniques has proved suitable to represent the dynamic behavior and time related nature of MC markets. Chaos theory(CT) and machine learning(ML) techniques are able to represent the temporal relationships of variables and their evolution has been used separately to better understand and represent MC markets. CT can determine a system's dynamics in the form of time delay and embedding dimension. However, this information has often been solely used to describe the system's behavior and not for forecasting.Compared to traditional techniques, ML has better performance for forecasting MC prices, due to its capacity for finding patterns governing the system's dynamics. However, the rational nature of economic problems increases concerns regarding the use of hidden patterns for forecasting. Therefore, it is uncertain if variables selected and hidden patterns found by ML can represent the economic rationality.Despite their refined features for representing system dynamics, the separate use of either CT or ML does not provide the expected realistic accuracy. By itself, neither CT nor ML are able to identify the main variables affecting systems, recognize the relation and influence of variables though time, and discover hidden patterns governing systems evolution simultaneously. This paper discusses the necessity to adapt and combine CT and ML to obtain a more realistic representation of MC market behavior to forecast long-term price trends. Forecasting mineral commodity(MC) prices has been an important and difficult task traditionally addressed by econometric, stochastic-Gaussian and time series techniques. None of these techniques has proved suitable to represent the dynamic behavior and time related nature of MC markets. Chaos theory(CT) and machine learning(ML) techniques are able to represent the temporal relationships of variables and their evolution has been used separately to better understand and represent MC markets. CT can determine a system's dynamics in the form of time delay and embedding dimension. However, this information has often been solely used to describe the system's behavior and not for forecasting.Compared to traditional techniques, ML has better performance for forecasting MC prices, due to its capacity for finding patterns governing the system's dynamics. However, the rational nature of economic problems increases concerns regarding the use of hidden patterns for forecasting. Therefore, it is uncertain if variables selected and hidden patterns found by ML can represent the economic rationality.Despite their refined features for representing system dynamics, the separate use of either CT or ML does not provide the expected realistic accuracy. By itself, neither CT nor ML are able to identify the main variables affecting systems, recognize the relation and influence of variables though time, and discover hidden patterns governing systems evolution simultaneously. This paper discusses the necessity to adapt and combine CT and ML to obtain a more realistic representation of MC market behavior to forecast long-term price trends.
出处 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2018年第2期309-322,共14页 矿业科学技术学报(英文版)
关键词 PRICE forecasting MINERAL COMMODITY MARKET dynamics CHAOS theory Machine learning Price forecasting Mineral commodity Market dynamics Chaos theory Machine learning
  • 相关文献

参考文献1

二级参考文献36

  • 1G.P.Zhang, E. B. Patuwo, M. Y. Hu, A simulation study of artificial neural networks for nonlinear time-series forecasting, Computers and Operations Research, 2001, 28: 381-396.
  • 2A. S. Chen, M. T. Leung, Regression neural network for error correction in foreign exchange rate forecasting and trading, Computers and Operations Research, 2004, 31(7): 1049-1068.
  • 3J. W. Denton, How good axe neural networks for causal forecasting?, Journal of Business Forecasting, 1995, 14: 17-20.
  • 4I. S. Markham, T. R. Rakes, The effect of sample size and variability of data on the comparative performance of artificial networks and regression, Computers and Operations Research, 1998, 25:251-263.
  • 5G. P. Zhang, Time series forecasting using a hybrid ARIMA and neural network model, Neurocomputing, 2003, 50: 159-175.
  • 6B.Edmundson, M. Lawrence, M. O'Connor, The use of non-time series information in sales forecasting: a case study, Journal of Forecasting, 1988, 7(3): 201-211.
  • 7C. Wolfe, B. Flores, Judgmental adjustment of earning forecasts, Journal of Forecasting, 1990,9(4): 389-405.
  • 8S. Y. Wang, TEI@I: a new methodology for studying complex systems, presented at Workshop on Complexity Science, Tsukuba, April 22-23, 2004.
  • 9S. Y. Wang, L. A. Yu, TEI@I-a new methodology for studying volatility of international oil price, presented at the Open Conference of the International Research Team of AMSS on Complexity Science, Beijing, June 17-19, 2004.
  • 10L. A. Yu, S. Y. Wang, K. K. Lal, A hybrid AI system for forex forecasting and trading dectsion through integration of artificial neural network and rule-based expert system, Submitted to Expert Systems with Applications, 2003.

共引文献72

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部