摘要
Full waveform inversion is a fitting process based on full seismic wave field simulation data using the full waveform information in seismic records and theoretically it is the ultimate goal of seismic inversion. However,there are many problems to be solved in practical application. Firstly,it is the strong nonlinear problem between the seismic wave field and inversion parameters; secondly,the lack of low-frequency information in seismic records. In this study,the envelope is used as objective function inversion to provide the inversion result for the multi-scale full waveform inversion as the initial model,solving the lack of low-frequency information in seismic records. Taking the envelope of seismic records as the objective function in combination of multi-scale full waveform inversion became a new inversion strategy,which naturally achieved the compensation of shortage of low-frequency information and inversion from low frequency to high frequency,reducing the non-linearity in the inversion process. The comparison of the result of full waveform inversion of the initial model built through envelope inversion with the result of the conventional multi-scale full waveform inversion indicates the effectiveness of envelope inversion for the recovery of low-frequency information in seismic records.
Full waveform inversion is a fitting process based on full seismic wave field simulation data using the full waveform information in seismic records and theoretically it is the ultimate goal of seismic inversion. However,there are many problems to be solved in practical application. Firstly,it is the strong nonlinear problem between the seismic wave field and inversion parameters; secondly,the lack of low-frequency information in seismic records. In this study,the envelope is used as objective function inversion to provide the inversion result for the multi-scale full waveform inversion as the initial model,solving the lack of low-frequency information in seismic records. Taking the envelope of seismic records as the objective function in combination of multi-scale full waveform inversion became a new inversion strategy,which naturally achieved the compensation of shortage of low-frequency information and inversion from low frequency to high frequency,reducing the non-linearity in the inversion process. The comparison of the result of full waveform inversion of the initial model built through envelope inversion with the result of the conventional multi-scale full waveform inversion indicates the effectiveness of envelope inversion for the recovery of low-frequency information in seismic records.
基金
Supported by Project of National Natural Science Foundation of China(No.41274120)