期刊文献+

总体最小二乘平差理论解算方法对比分析

Comparison and Analysis of Solution Methods of Total Least Square Adjustment Theory
下载PDF
导出
摘要 本文主要对现有的总体最小二乘平差理论进行了相关分析,结合其两种解算方式包括奇异值分解法和迭代解法,进行了相关的理论阐述,最终得到了总体最小二乘平差迭代解法更适合应用与测量平差分析。 In this paper,we mainly analyze the existing theory of least-squares adjustment,and combine the two methods of calculation including singular value decomposition and iterative method to explain the relevant theory.Finally,Multiply adjustment iterative method is more suitable for application and measurement adjustment analysis.
作者 姜家庆 JIANG Jia-qing(Tianjin Municipal Engineering Design and Research Institute, Tianjin 300202, China)
出处 《科技视界》 2018年第3期163-164,共2页 Science & Technology Vision
关键词 总体最小二乘平差 奇异值分解法 迭代解法 Total least squares adjustment Singular value decomposition method Iterative solution method
  • 相关文献

参考文献3

二级参考文献39

  • 1Golub G H, Lan Loan F C. An Analysis of the Total Least Squares Problem[J]. SIAM Journal on Numerical Analysis, 1980,17(6 ) : 883-893.
  • 2Schaffrin B, Felus Y A. On the Multivariate Total Least-squares Approach to Empirical Coordinate Transformations [J].Three Algorithms J Geod, 2008,82:373-383.
  • 3Schaffrin B, Felus A Y. Multivariate Total Least- squares Adjustment for Empirical Affine Transformations[C]. The 6th Hotine Marussi Symposium for Theoretical and Computational Geodesy, Springer, Berlin, 2007.
  • 4Schaffrin B, Lee I P, Felus Y A, et al. Total Least-squares (TLS) for Geodetic Straight-line and Plane Adjustment[J]. Boll Geod Sci Affini, 2006, 65(3): 141-168.
  • 5Schaffrin B. A Note on Constrained Total Leastsquares Estimation[J]. Linear Algebra Appl, 2006, 417(1) :245-258.
  • 6Eckart C, Young G. The Approximation of One Matrix by Another of Lower Rank [J]. Psychometrika ,1936,1(3) :211-218.
  • 7Van Huffel S, Vandewalle J. The Total Leastsquares Problem Computational Aspects and Analysis[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1991.
  • 8Strang G. Linear Algebra and Its Applications[M]. 3rd ed. San Diego: Harcourt Brace Jovanovich. 1988.
  • 9腾素珍,冯敬海.数理统计学[M].大连:大连理工大学出版社,2005
  • 10Golub G H and Van Loan C F. An analysis of the total least squares problem[ J]. SIAM J Numer Anal. , 1980,17 : 883 - 893.

共引文献75

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部