期刊文献+

致孔剂溶解度参数对大孔层析介质的结构影响研究 被引量:3

Effect of Porogen Solubility Parameter on Structure of Chromatographic Supports with Large Pores
下载PDF
导出
摘要 分别以甲基丙烯酸缩水甘油醚酯和乙二醇二甲基丙烯酸酯为功能单体和交联剂,采用悬浮聚合方法制备了大孔聚合物微球。考察了致孔剂的组成及用量对微球的孔径、比表面积的影响,其中随着致孔剂中的良溶剂(二氯甲烷δ=9.7(cal/cm^3)^(1/2)和不良溶剂(正辛醇δ=10.3(cal/cm^3)^(1/2)的比例变化,致孔剂体系溶解度参数可调范围为9.89~10.09(cal/cm^3)^(1/2),随着致孔剂与聚合物之间溶解度差值的增加,微球的孔径随之增大而比表面积呈下降趋势。将此类微球偶联聚乙烯亚胺衍生为阴离子交换层析介质,以前沿分析法比较了不同孔径的微球的传质性能,其中孔径为257 nm的介质仍能保持较高的动态蛋白载量(45.1 mg/m L),表明此类大孔介质在高通量分离纯化应用方面具有很大潜力。 The macroporous microspheres were prepared through suspension polymerization and based on a copolymer of glycidyl methacrylate and ethylene glycol dimethacrylate. The effect of porogen on the microspheres structure was evaluated in terms of pore size and surface area. Porogen contained dichloromethane( δ = 9.7( cal/cm^3)^(1/2) and N-octanol( δ= 10.3( cal/cm^3)^(1/2) which corresponded to a good and poor solvent,respectively. The solubility parameter of porogen was controlled in the range of 9.89-10.09( cal/cm^3)^(1/2). The pore size of microspheres increased with the difference value of solubility parameter between the polymer and the porogen. On the contrary,the surface area of microspheres decreased in this study. The anion exchange media was prepared through coupling poly( ethylene imine) in the microspheres,and the proteins transport was determined by frontal analysis method. The macroporous microspheres with257 nm pore size could still afford a high proteins capacity( 45. 1 mg/m L). These macroporous supports showed a large potential in a rapid separation of proteins.
出处 《分析化学》 SCIE EI CAS CSCD 北大核心 2018年第2期288-292,共5页 Chinese Journal of Analytical Chemistry
基金 北京市自然科学基金(No.2162013) 北京市教委科技面上项目(No.KM201710017003) 2017北京高等学校高水平人才交叉培养'实培计划'项目(No.17032021006)资助~~
关键词 致孔剂 溶解度参数 大孔微球 蛋白质 分离 Porogen Solubility parameter Macroporous microspheres Protein Separation
  • 相关文献

参考文献3

二级参考文献28

  • 1朱桃玉,伍品端,左娜娜,吴京洪,马志玲.牛血清白蛋白修饰毛细管整体柱的制备及组氨酸对映体分离[J].高等学校化学学报,2007,28(3):427-430. 被引量:5
  • 2Niebert M. , Lipin D. I. , Trends Biotechnol. , 2005, 23, 523-529.
  • 3Xia Z. Z. , Trends in Arudytical Chemistry, 2016, 80,495-506.
  • 4Shpigun O. A. , Analytica Chimica Acta, 2016, 904, 33-50.
  • 5Pattenden L. K. , Middelberg P. J. , Wang L. , Wei W. , Xia Z. , Jie X. Zatirakha A. V. , Smolenkov A. D. Fekete S. , Veuthey J. , Guillanne D. , J. Chromatogr. A, 2015, 1408, 1-14.
  • 6Hober S. , Nord K. , Linhuh M. , J. Chromatogr. B, 2007, 848(1), 40-47.
  • 7Hahn R. , Schlegel R. , Jungbauer A. , J. Chromatogr. B, 2003, 790( 1 ), 35-51.
  • 8Hahn R. , Bauerhansl P. , Shimahara K. , Wizniewski C. , Tscheliessnig A. , Jungbauer A. , J. Chromatogr. A, 2005, 1093, 98-110.
  • 9Horak D. , Labsky K. , Pilar J. , Bleha M. , Pelzbauer Z. , Svec F. , Polymer, 1993, 34, 3481-3489.
  • 10Svec F. , J. Sep. Sci. , 2004, 27, 747-766.

共引文献15

同被引文献13

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部