期刊文献+

遗传算法在模糊PID交流电机矢量控制系统中的应用 被引量:4

Application of genetic algorithm in fuzzy PID vector control system of AC motor
下载PDF
导出
摘要 交流电机矢量控制系统是一个非线性、强耦合性、时变的复杂系统,用传统的PID难以达到理想的控制效果,而基于模糊控制原理与传统PID原理相结合的模糊PID控制器取决于模糊控制规则,但规则的设置依赖人的主观经验,不一定能达到最优。该文结合遗传算法和模糊PID控制的优点,用模糊推理在线整定PID控制参数,利用遗传算法优化模糊控制规则。仿真结果表明,这是一种非常有效的控制方法,能够达到理想的控制效果。 It is difficult to achieve the desired control in vector control system for AC motor by using the ordinary PID controller due to the control system is a nonlinear,strong couple,and complicated time-varying system.A fuzzy-PID controller that based on the fuzzy control theory and ordinary PID principle depends on control rules,which comes from subjective experience and always is not optimal.Combined advantages of genetic algorithm and fuzzy PID control system,use fuzzy reasoning on-line to adjust PID control parameters and utilize genetic algorithm to optimize fuzzy control rules.The result of simulation indicates that the control strategy is effective,and the control effect is pretty good.
作者 刘洪玮 LIU Hongwei(Ningbo Dragon Lighting Design Co.,Ltd,Shanghai 201100,China)
出处 《工业仪表与自动化装置》 2018年第1期120-123,共4页 Industrial Instrumentation & Automation
关键词 遗传算法 矢量控制 模糊控制 模糊PID控制 仿真 genetic algorithm vector control fuzzy control fuzzy-PID control simulation
  • 相关文献

参考文献2

二级参考文献11

  • 1沙智明,郝育黔,郝玉山,杨以涵.基于改进自适应遗传算法的电力系统相量测量装置安装地点选择优化[J].电工技术学报,2004,19(8):107-112. 被引量:15
  • 2J H Holland.Adaptation in Natural Artificial Systems[M].MIT Press, 1975.
  • 3Masanori Sugisaka,Xinjian Fan.Adaptive Genetic Algorithm with a Cooperative Mode[C].In:Proceedings of IEEE International Symposium on Industrial Electronics,2001.
  • 4D E Goldberg.C, enetic Algorithm in Search,Optimization,and Machine Learning[M].Addison-Wesley, 1989.
  • 5Srinvas M,Patnaik L M.Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms[J].IEEE Tram on Systems,Man and Cybernetics,1994;24(4).
  • 6F Herrera, M Lozano. Adaptation of genetic algorithm parameters based on fuzzy logic ControUers[C].In:F Herrera,J L Verdegay eds.Genetic Algorithms and Soft Comuting, Berlin,Germany:Springer-Verlag, 1996:95-125.
  • 7A E Eiben,R Hinterding,Z Michalewicz.Parameter control in evolutionary algorithms[J].IEEE Trans on Evol Comput, 1999,3:124-141.
  • 8J E Smith,T C Fogarty.Operator and parameter adaptation in genetic algorithms[J].Soft Computing, 1997;1(2):81-87.
  • 9F Herrera,M Lozano.Adaptive Genetic Operators Based on Coevolution with Fuzzy Behaviors[J].IEEE Trans on Evolutionary Computation,2001;5:149-165.
  • 10Mennon A,K Mehrotra,C K Mohan et al.Characterization of a class of sigmoid functions with applications to neural networks[J].Neural Networks, 1996;9:819-835.

共引文献82

同被引文献51

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部