期刊文献+

基于格式塔认知框架的乳腺肿块分割算法 被引量:1

Breast mass segmentation algorithm based on gestalt psychology framework
下载PDF
导出
摘要 针对X线图像乳腺肿块分割易受边缘及周围腺体组织干扰,分割精度不高的问题,该文提出了一种基于格式塔认知框架的乳腺肿块分割算法。该算法利用格式塔心理学理论,对人类视觉自下而上的感知和自上而下的认知过程建模,并将其在肿块分割问题中实例化表示。首先,抽取视觉块,并将其作为基本认知单元;然后,利用图像局部自相似性及格式塔规则进一步简化图像;最后,从全局特征出发,融入专家诊断知识,通过最优化实现肿块的自动化分割。在公开数据集INbreast上进行实验,对比其他流行算法,分割准确率提高了10%。该算法实现了无监督的自动化病灶分割,无需人工干预,对图像噪声具有强抗干扰性。 The CAD system for breast mass segmentation is a challenging task due to the abundant glandular tissue of X-ray image.This paper proposes a novel breast mass segmentation method based on gestalt psychology framework.The framework explores the cognitive process of human including bottom-up sensation and top-down recognition.Then,it is instantiated in the application of breast mass segmentation problem.Firstly,the visual patches are generated as basic processing units.Secondly,the visual patches are further simplified by the self-similarity of image and gestalt psychology.Finally,prior experience of radiologists is integrated into the framework.The final segmentation results are obtained by a global optimization method.The experiments are implemented on the public INbreast dataset and the segmentation accuracy increases 10%comparing with other popular algorithms.It concludes that the proposed method can be used to achieve automated segmentation of mass legions.Meanwhile,it yields stronger robustness.
作者 王红玉 冯筠 刘飞鸿 陈宝莹 WANG Hongyu;FENG Jun;LIU Feihong;CHEN Baoying(School of Information Science and Technology,Northwest University,Xi′an 710127,China;Department of Radiology,Tangdu Hospital,Forth Military Medical University,Xi′an 710038,China)
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第1期41-49,共9页 Journal of Northwest University(Natural Science Edition)
基金 西北大学研究生自主创新基金资助项目(YZZ15095) 国家自然科学基金资助项目(81671648) 陕西省科技攻关基金资助项目(2015SF119) 国家自然科学青年基金资助项目(61701404)
关键词 格式塔 肿块分割 X线图像 认知 gestalt psychology mass segmentation X-ray cognition
  • 相关文献

参考文献2

二级参考文献22

  • 1邱建峰,于兹喜,李月卿,王昌元,徐惠.数字乳腺X线照片CAD中可疑密度区域的自动分割(英文)[J].泰山医学院学报,2005,26(2):136-139. 被引量:4
  • 2Michael A W . Segmentation of the breast region in m_amrno- grams using snakes [ A ]. Alexei S. Canadian Conference on Computer and Robot Vision[ C]. Canada: IEEE Computer Soci- eW, 2004.385 - 392.
  • 3Yu Hong-wei. Xu Wei-dong,Liu Wei, et al. Gaussian pyramid based multi-scale GVF for mass segmentation in digitized mammograms[A]. 2009 3rd International Conference on Bioin- formatics and Biomedical Engineering[ C]. Beijing: 1EEE Com- puter Society,2009.1 - 4.
  • 4J E Ball. Three stage level set segmentation of mass core, pe- riphery, and spiculations for automated image analysis of digital mammograms[ D ]. Starkville: Mississppi State Univ, 2007: 55 -80.
  • 5Chan H P. Computer-aided breast cancer diagnosis[ A]. Perlrick N , Sahiner B. In Artifical Intelligence Techniques in Breast Cancer Diagnosis and Prognosis[ C]. Nanjing: World Scientific Press. 2002:179 - 264.
  • 6Sahiner B , Chan H P , Petfick N , et al. Improvement of mam- mographic mass characterization usingspiculation measures and morphological features[ J] .Medical Physics, 2001,28(7) : 1455 - 1465.
  • 7John E Ball. Loft Mann Bruce. Digital mammograrn spiculated mass detection and spicule segmentation using level sets[A]. 29th Annual International Conference of the IEEE EMBS[ C]. Lyon, France: IEEE Computer Society, 21307.1979 - 1984.
  • 8Caselles V, Morel J M, Sapiro G. Geodesic active contour models[ J]. International Journal of Computer Vision, 1997, 22:61 - 79.
  • 9Tony F Chan, Luminita A Vese. Active contours without edges [ J]. IEEE Transactions, 2001, Image Processing- 10(2 ) : 266 - 277.
  • 10X Bresson, S Esedoglu, P Vandergheynst, et al. Fast global minimization of the active Contour/Snake model[ J ]. Journal of Mathematic Imaging and Vision,2007,28(2):151- 167.

共引文献7

同被引文献14

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部