期刊文献+

基于图谱超分辨的WSN节点间数据填充方法

Data filling method between WSN nodes based on super-resolution map spectrum
下载PDF
导出
摘要 为更好地解决无线传感器网络(WSN)节点间的数据缺失问题,快速准确地提高节点探测的精度与质量,提出一种基于图谱超分辨的WSN节点间数据填充方法。从数据处理角度出发,将WSN节点间数据填充问题转化为数据的图谱超分辨问题来处理,即将WSN节点数据进行二维图谱化,考虑传感器测量数据的特点,建立合适的归一化图谱模型;利用马尔可夫随机场模型来处理建立的无线传感器图谱,实现对节点间空白区域数据的准确估计。实验结果表明,与3种经典的WSN缺失值估算方法相比,所提方法可获得较高峰值信噪比(PSNR)和较低根均方误差(RMSE)。 To effectively solve the problem of data loss between nodes in wireless sensor networks(WSN)and quickly and accurately improve the accuracy and quality of the node detection,a data filling method between WSN nodes based on the super-resolution map spectrum was proposed.From the data processing point perspective,the WSN nodes data were transformed into super-resolution map data,achieving two-dimensional map data of WSN nodes.The characteristics of sensor data were considered and an appropriate normalization map spectrum model was established.Markov random field model was used to deal with the established WSN map spectrum data,which achieved an accurate estimation of the blank area between data nodes.Simulation results show that compared with three classical WSN missing value estimation methods,the proposed method has higher peak signal to noise ratio(PSNR)and lower root mean square error(RMSE).
作者 钱文光 李会民 QIAN Wen-guang;LI Hui-min(School of Computer and Remote Sensing Information Technology,North China Institute of Aerospace Engineering,Langfang 065000,China)
出处 《计算机工程与设计》 北大核心 2018年第2期340-346,共7页 Computer Engineering and Design
基金 河北省科技计划基金项目(12210317) 河北省科学技术研究与发展计划专项基金项目(15K55403D) 廊坊市科技支撑计划基金项目(2014011021)
关键词 图谱 超分辨 无线传感器网络 马尔可夫随机场 归一化 map spectrum super-resolution wireless sensor network(WSN) Markov random field normalization
  • 相关文献

参考文献7

二级参考文献78

  • 1周悦,阚凤龙,张东伟,单丹.基于ZigBee的无线传感器网络簇树优化路由算法[J].沈阳建筑大学学报(自然科学版),2011,27(2):391-396. 被引量:15
  • 2李闻,林亚平,童调生,陈宇,余建平.传感网络中一种基于蚂蚁算法的分布式数据汇集路由算法[J].小型微型计算机系统,2005,26(5):788-792. 被引量:12
  • 3Cullar D, Estrin D, Strvastava M. Overview of sensor networks. IEEE Computer, 2004, 37(8): 41-49.
  • 4Madden S, Franklin M J, Hellerstein J M, Hong W. The design of an acquisitional query processor for sensor networks//Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data. San Diego, California, 2003: 491-502.
  • 5Manihi A, Nath S, Gibbons P B. Tributaries and deltas: Efficient and robust aggregation in sensor network streams// Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data. Baltimore, Maryland, 2005: 287-298.
  • 6Silberstein A, Munagala K, Yang J. Energy-efficient monitoring of extreme values in sensor networks//Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data. Chicago, Illinois, 2006:169-180.
  • 7Considine J, Li F, Kollios G, Byers J. Approximate aggregation techniques for sensor databases//Proceedings of the 20th International Conference on Data Engineering. Boston, MA, 2004:449-460.
  • 8Deshpande A, Guestrin C, Madden S, Hellerstein J M, Hong W. Model-driven data acquisition in sensor networks// Proceedings of the 30th International Conference on Very Large Data Bases. Toronto, Canada, 2004:588- 599.
  • 9Deshpande A, Guestrin C, Hong W, Madden S. Exploiting correlated attributes in acquisitional query processing//Proceedings of the 21st International Conference on Data Engineering. Tokyo, Japan, 2005: 143-154.
  • 10Chu D, Deshpand A, Hellerstein J M, Hong W. Approximate data collection in sensor networks using probabilistic models//Proceedings of the 22nd International Conference on Data Engineering. Atlanta, 2006:48.

共引文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部