期刊文献+

融合改进韦伯特征的深度置信网络表情识别 被引量:4

Facial expression recognition based on binary Weber local descriptor and deep belief net
下载PDF
导出
摘要 为改善深度置信网络运用于面部表情识别时,容易出现局部结构特征被忽视、鲁棒性差、运算量大等问题,提出融合双值韦伯局部描述子的深度置信网络算法。采用双值韦伯特征对图像进行初次特征提取,在空间分布优化传统韦伯特征的梯度方向算法,丰富局部细节纹理信息;在深度置信网络中进行二次特征提取,融合局部纹理信息的表征优势,借助深度学习在整体结构信息的提取优势,得到更易识别的高级抽象特征。实验结果表明,所提算法提高了面部表情识别率,减少了深度学习的计算量,对光照和噪音有更好的鲁棒性。 To solve the issues when deep learning was applied to facial expression recognition such as ignored local structure cha-racteristics,poor robustness of strong light and large computation.The method of facial expression recognition based on binary weber local descriptor(BWLD)and deep belief net(DBN)was proposed.First feature of image was extracted using BWLD.Compared with Weber local descriptor(WLD),orientation calculation method of local texture information in space distribution was optimized,details information was enriched.Second feature was extracted using DBN.Combined with the local texture feature advantage and whole structure information extracted advantage of deep learning,the higher level of more discriminating abstraction features was got.Experimental results show that,the algorithm of combination of DBN and BWLD results in higher recognition rate,and stronger robustness of illumination and noise.The amount of calculation of the deep learning is also reduced.
作者 田苗 郝晓丽 TIAN Miao;HAO Xiao-li(College of Computer Science and Technology,Taiyuan University of Technology,Taiyuan 030024,China)
出处 《计算机工程与设计》 北大核心 2018年第2期542-546,共5页 Computer Engineering and Design
关键词 人脸表情识别 韦伯局部描述子 深度置信网络 特征提取 深度学习 facial expression recognition WLD DBN feature extraction deep learning
  • 相关文献

参考文献3

二级参考文献39

  • 1刘晓旻,谭华春,章毓晋.人脸表情识别研究的新进展[J].中国图象图形学报,2006,11(10):1359-1368. 被引量:62
  • 2刘晓旻,章毓晋.基于Gabor直方图特征和MVBoost的人脸表情识别[J].计算机研究与发展,2007,44(7):1089-1096. 被引量:26
  • 3BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 4BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 5HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 6BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.
  • 7LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324.
  • 8VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103.
  • 9VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408.
  • 10YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288.

共引文献710

同被引文献48

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部