期刊文献+

ARM平台下人脸识别智能监控系统 被引量:6

Implementation of intelligent face recognition surveillance system based on ARM
下载PDF
导出
摘要 提出一种基于ARM的人脸识别智能监控系统设计方案。在嵌入式平台下,针对局部二值模式(local binary pattern,LBP)算法不能在较远距离快速实现人脸识别的问题,设计先利用ViBe(visual background extractor)算法实现背景建模,再对检测到的目标区域进行LBP人脸识别的方法。测试结果表明,相对于传统视频监控系统存在的效率低下、资源浪费、被动监控等问题,该系统功能完整、经济实用,能远距离快速识别非法闯入者,及时通知用户采取防范措施,具有广泛的应用前景。 An intelligent face recognition video monitoring system based on ARM was proposed.Because of the limited operation capability of embedded platform,it is difficult for LBP algorithm to recognize face in real time from a long distance.To solve this problem,the system used the ViBe algorithm to detect moving object first,and then face was detected and recognized in the detected moving object.Compared with the traditional video monitoring system with low efficiency and poor intelligence,the system can recognize the illegal intruder in real time from a long distance,and remind the user to take preventive measures automatically.It is fully functional,economic,and with good practical application value.
作者 江烂达 储珺 缪君 JIANG Lan-da;CHU Jun;MIAO Jun(School of Software,Nanchang Hangkong University,Nanchang 330063,China)
出处 《计算机工程与设计》 北大核心 2018年第2期590-595,共6页 Computer Engineering and Design
基金 国家自然科学基金项目(61663031 61661036) 江西省研究生创新专项基金项目(YC2015-S337)
关键词 嵌入式 人脸识别 智能监控 局部二值模式 运动目标检测 embedded technology face recognition intelligent surveillance local binary pattern moving object detection
  • 相关文献

参考文献6

二级参考文献76

  • 1彭宇,吴成东,郑君刚.基于ZigBee技术智能家居无线报警系统设计[J].安防科技,2007(4):59-60. 被引量:3
  • 2胡延,娄淑琴,李冰.JPEG图像压缩方法的研究[J].中国科技信息,2007(5):135-137. 被引量:5
  • 3王洪春,彭宏.一种基于主成分分析的异常点挖掘方法[J].计算机科学,2007,34(10):192-194. 被引量:14
  • 4WREN C R, AZARBAYEJANI A, DARRELL T, et al. Pfinder: Real-time tracking of the human body [ J ]. Pat- tern Analysis and Machine Intelligence, IEEE Transac- tions on, 1997, 19(7) : 780-785.
  • 5HARITAOGLU I, HARWOOD D, DAVIS L S. W 4 S: A real-time system for detecting and tracking people in 2 1/2DIM]. Computer Vision-ECCV98. Springer Berlin Heidelberg, 1998 : 877-892.
  • 6ZIVKOVIC Z. Improved adaptive Gaussian mixture model for background subtraction [ C ]. Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on. IEEE, 2004, 2: 28-31.
  • 7KIM K, CHALIDABHONGSE T H, HARWOOD D, et al. Real-time foreground - background segmenta- tion using codebook model [ J]. Real-time Imaging, 2005, 11(3): 172-185.
  • 8GODBEHERE A B, MATSUKAWA A, GOLDBERG K. Visual tracking of human visitors under variable- lighting conditions for a responsive audio art installation [ C ]. American Control Conference ( ACC ), IEEE, 2012: 4305-4312.
  • 9BARNICH O, VAN DROOGENBROECK M. Vibe. A universal background subtraction algorithm for video se- quences [ J ]. Image Processing, IEEE Transactions on, 2011, 20(6) : 1709-1724.
  • 10VAN DROOGENBROECK M, PAQUOT O. Background subtraction: experiments and improvements for Vibe [ C ]. Computer Vision and Pattern Recognition Workshops ( CVPRW), 2012 IEEE Computer Society Conference on IEEE, 2012: 32-37.

共引文献73

同被引文献50

引证文献6

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部