期刊文献+

标签一致K-SVD稀疏编码视频跟踪算法 被引量:3

Visual Tracking Algorithm Based on Label Consistent K-SVD Sparse Coding
下载PDF
导出
摘要 稀疏编码视频目标跟踪算法对目标遮挡问题有一定的适应性,但当目标受背景杂波、光照变化等干扰时,跟踪结果将会出现漂移现象.为此,提出一种基于字典学习和模板更新的视频目标跟踪算法.该算法在构造字典时加入背景模板集,利用标签一致K-SVD方法进行字典学习,同时训练出低维字典和目标背景分类器;在稀疏编码过程中,借助粒子滤波技术,采用分类器分类结果和候选目标直方图构建整体似然模型;最后通过字典学习更新字典、分类器及目标直方图.采用标准数据库中具有挑战性的视频数据进行算法测试实验,结果表明,对于存在遮挡、背景杂波、光照变化、目标旋转和尺度变化等复杂跟踪环境下的目标跟踪,文中算法都能有效地降低跟踪结果存在的漂移现象,且具有较好的稳定性. Target tracking algorithm based on sparse coding has good performance for solving the target occlusion problem.However,when the foregrounds of targets were disturbed by the background clutter and illumination,the tracking performance would be seriously decline.We therefore proposed a novel visual tracking algorithm based on dictionary learning and template updating strategy.The background template set was considered and added in the constructed dictionary,and the low dimensional dictionary and target-background classifier were trained simultaneously by using the label consistent K-SVD dictionary learning mechanism.In the sparse coding stage,the particle filter technique was employed,and the overall likelihood of each particle was calculated by using the classification results and the target candidate histogram.Finally,the dictionary,classifier and target histogram were updated by the dictionary learning method.Numerous experiments on various challenging videos show that the proposed algorithm has better tracking performance than some benchmark methods in the scenarios with the interference of occlusion,background clutter,illumination change,target rotation and scale change.
作者 杨金龙 陈小平 汤玉 徐壮 Yang Jinlong;Chen Xiaoping;Tang Yu;Xu Zhuang(School of Internet of Things Engineering,Jiangnan University,Wuxi 214122)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2018年第2期262-272,共11页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61305017) 江苏省自然科学基金(BK20130154)
关键词 视频跟踪 标签一致 稀疏编码 字典学习 粒子滤波 visual tracking label consistence sparse coding dictionary learning particle filter
  • 相关文献

参考文献4

二级参考文献82

  • 1Porikli P, Tuzel O, Meer P. Covarianee tracking using model update based on Lie algebra [C] //Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Los Alamitos: IEEE Computer Society Press, 2006 : 728-735.
  • 2Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5) : 56,1-577.
  • 3Tuzel O, Porikli F, Meer P. Region eovariance: a fast descriptor for detection and classification [C]//Proceedings of the 9th European Conference on Computer Vision. Berlin: Springer, 2006, 3954: 589-600.
  • 4Wu Y, Cheng J, Wang J Q, etal. Real-time visual tracking via incremental covarianee tensor learning [C] //Proceedings of the 12th IEEE International Conference on Computer Vision. Los Alamitos: IEEE Computer Society Press, 2009: 1631-1638.
  • 5Yang M, Wu Y, Hua G. Context-aware visual tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(7): 1195-1209.
  • 6Arsigny V, Fillard P, Pennec X, et al. Geometric means in a novel vector space structure on symmetric positive-definite matrices[J]. SIAM Journal on Matrix Analysis and Applications, 2006, 29(1): 328-347.
  • 7Pennec X, Fillard P, Ayache N. A Riemannian framework for tensor computing [J]. International Journal of Computer Vision, 2008: 66(1): 41-66.
  • 8Miezianko R. Terravic research infrared database [OL]. [ 2011-03-08]. http://www, terravic, corn/research/motion. htm.
  • 9韩崇昭,朱洪艳,段战胜,等.多源信息融合[M].2版.北京:清华大学出版社,2010.
  • 10朱胜利,朱善安.基于卡尔曼滤波器组的Mean Shift模板更新算法[J].中国图象图形学报,2007,12(3):460-465. 被引量:20

共引文献93

同被引文献20

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部