摘要
齿轮箱工作环境恶劣,齿轮与滚动轴承等关键部件易发生疲劳故障。将目前常用的故障特征提取方法应用于齿轮箱实际诊断时,其结果具有不稳定性。Alpha稳定分布与多重分形分析被逐渐应用于故障诊断领域,这2种方法各具优点且相互关联。文章对Alpha稳定分布及多重分形分析应用于齿轮箱齿轮或滚动轴承故障特征提取的已有成果进行详细梳理,分别从基于Alpha稳定分布的故障特征提取方法、基于多重分形的故障特征提取方法及基于Alpha稳定分布与多重分形的特征融合方法 3方面进行评述,并指出今后可进一步在特征筛选、特征融合等方面开展研究。
Gearbox is usually designed to operate on complex conditions with variable speeds,loading and temperatures,which easily lead to fatigue faults of its key components,such as gears and rolling bearings.At present,the diagnosis result is occasionally unstable when the common fault feature extraction methods are used in actual diagnosis of gearbox.Recently,Alpha stable distribution(ASD)and Multi-fractal analysis(MFA)have been investigated to address this limitation.These two methods have their respective advantages,and can be compensated each other.This article reviews and analyzes the existing achievements,and discusses the three aspects of the fault feature extraction method based on ASD,the fault feature extraction method based on MFA,and the fault feature extraction method based on feature fusion of ASD and MFA,respectively.Finally,the future research directions in feature selection,feature fusion are pointed out.
作者
熊庆
徐延海
唐岚
XIONG Qing;XU Yanhai;TANG Lan(Fluid and Power Machinery Key Laboratory of Ministry of Education,Chengdu 610039 China;Vehicle Measurement,Control and Safety Key Laboratory of Sichuan Province,Chengdu 610039 China;School of Automobile and Transportation,Xihua University,Chengdu 610039 China)
出处
《西华大学学报(自然科学版)》
CAS
2018年第1期68-74,共7页
Journal of Xihua University:Natural Science Edition
基金
四川省科技计划项目(2018JY0238
2017GZ0103)
四川省教育厅自然科学重点项目(17ZA0354)
国家自然科学基金项目(51775448)
教育部春晖计划项目(Z2012024)
流体及动力机械教育部重点实验室研究基金(szjj2016-013)
汽车测控与安全四川省重点实验室研究基金(szjj2017-078)
西华大学校重点科研基金(z1620303)