期刊文献+

基于Louvain算法的图数据三维树形可视化 被引量:12

Visualizing graph data in 3D tree-style based on Louvain algorithm
下载PDF
导出
摘要 提出一种图数据的三维树形可视化方法,基于Louvain算法对图数据中的复杂的网络关系进行层次聚类,利用三维树形映射表达聚类结果,直观展示隐含于图数据中的结构关系,通过在三维场景中旋转、缩放、移动、拾取高亮等交互操作多视角地展示数据。集成开源图数据库Neo4j研发原型系统,并开展案例数据实验。实验结果表明,该方法不仅能够简洁灵活地展示图数据的总体层次结构,还能够多样化地表达数据细节,为利用虚拟现实技术探索图数据的潜在信息提供有效的技术支持。 Graph visualization as an effective technology to understand the graph structure and reveal hidden self-organization is of great significance.Meanwhile,detecting hierarchical community structures in contact graph data may give reorganizational insight of complex network relationships.This paper introduces a Neo4j-based implementation of Louvain method to produce multi-level clusters,and a prototype system for graph visualization.In the system,the hierarchical structure data are mapped to a 3D botanical tree,and provide the flexible,intuitive operation to explore the potential information.Visual analysis of experimental results show that the proposed method not only exhibits sophisticated hierarchical community structures clearly,but also displays the data details variously.As a result,the method which is applied virtual reality technique provides strong technical support for graph mining.
作者 林定 徐颖 黄国新 陈崇成 LIN Ding;XU Ying;HUANG Guoxin;CHEN Chongcheng(Key Laboratory of Spatial Data Mining&Information Sharing of MOE,Fuzhou University,Fuzhou 350116,China;National Engineering Research Center of Geospatial Information Technology,Fuzhou University,Fuzhou 350116,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第7期96-101,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.31200430);福建省科技引导性项目(No.2016Y0058)。
关键词 图数据 层次社区结构 三维可视化 Neo4j graph data hierarchical community structure 3D visualization Neo4j
  • 相关文献

参考文献2

二级参考文献12

  • 1NEWMAN M E J,BARABASI A L,WATTS D J. The structure and dynamics of networks[M].Princeton,USA:Princeton University Press,2006.
  • 2GIRVAN M,NEWMAN M E J. Improved spectral algorithm for the detection of network communities[J].{H}Proceedings of the National Academy of Sciences(USA),2002,(99):7821-7826.
  • 3RADICCHI F,CASTELLANO C,CECCONI F. Defining and identifying communities in networks[J].{H}Proceedings of the National Academy of Sciences(USA),2004,(101):2658-2663.doi:10.1073/pnas.0400054101.
  • 4NEWMAN M E J,GIRVAN M. Finding and evaluating community structure in networks[J].{H}Physical Review E,2004,(02):026113-1-026113-15.
  • 5CLAUSET A,NEWMAN M E J,MOORE C. Finding community structure in very large networks[J].{H}Physical Review E,2004,(06):066111-1-066111-6.
  • 6WU F,HUBERMAN B A. Finding communities in linear time:a physics approach[J].Phys J B,2003,(02):331-338.
  • 7NEWMAN M E J. Finding community structure in networks using the eigenvectors of matrices[J].{H}Physical Review E,2006,(03):036104-1-036104-19.
  • 8BRANDES U,DELLING D,GAERTLER M. Maximizing modularity is hard[EB/OL].http://arxiv.org/abs/physics/0608255,2010.
  • 9NEWMAN M E J. Fast algorithm for detecting community structure in networks[J].{H}Physical Review E,2004,(06):066133-1-066133-5.
  • 10VINCENT D B,GUILLAUME J L,RENAUD L. Fast unfolding of communities in large network[J].Journal of Statistical Mechanics:Theory and Experiment,2008,(10):1-12.

共引文献40

同被引文献88

引证文献12

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部