期刊文献+

一种动态划分的混合连续域蚁群优化算法 被引量:9

Density dynamic partition hybrid ant colony optimization for continuous domains
下载PDF
导出
摘要 连续域蚁群优化算法在处理高维问题时易陷入局部最优,而且收敛速度较慢。针对这些问题,提出了一种改进的连续域蚁群优化算法。该算法将解划分为优解和劣解两部分,并在迭代过程中动态调整优解和劣解的数目。对于优解,利用全局搜索策略进行预处理,这样能提高算法的收敛速度和收敛精度。对于劣解,则利用随机搜索策略进行预处理,这样能扩大搜索范围,增强搜索能力。通过标准测试函数对所提算法进行测试,结果表明改进策略能够有效提高连续域蚁群优化算法的收敛速度并改善解的质量。 Ant Colony Optimization for continuous domains(ACOR)is easy to fall into local optimum when dealing with high dimensional problems,and its convergence rate is slow.So ACO for continuous domains algorithm is put forward to solve these problems.In the proposed algorithm,the solution is divided into two parts,the optimal solution and the inferior solution,and the number of the optimal solution and the inferior solution is adjusted dynamically in the iterative process.For the optimal solution,the global search strategy is used to pre process,which can improve the convergence speed and convergence accuracy of the algorithm.For inferior solution,using a random search strategy for pretreatment,this can expand the search scope,and enhance search ability.The test results show that the DPHACO algorithm can effectively improve the convergence speed and the quality of the solution.Compared with continuous ant colony algorithm and other intelligent optimization algorithms,the proposed algorithm is more effective and better than the global search capability.
作者 姜道银 葛洪伟 袁罗 JIANG Daoyin;GE Hongwei;YUAN Luo(School of Internet of Things,Jiangnan University,Wuxi,Jiangsu 214122,China;Ministry of Education Key Laboratory of Advanced Process Control for Light Industry(Jiangnan University),Wuxi,Jiangsu 214122,China)
出处 《计算机工程与应用》 CSCD 北大核心 2018年第7期144-151,共8页 Computer Engineering and Applications
基金 江苏省普通高校研究生科研创新计划项目(No.KYLX15_1169) 江苏高校优势学科建设工程资助项目
关键词 蚁群优化算法 动态划分 全局搜索 随机搜索 预处理 Ant Colony Optimization(ACO)algorithm dynamic partition global search random search pretreatment
  • 相关文献

参考文献3

二级参考文献20

  • 1赵巍,王万良.改进遗传算法求解柔性job-shop调度问题[J].东南大学学报(自然科学版),2003,33(z1):120-123. 被引量:5
  • 2王常青,操云甫,戴国忠.用双向收敛蚁群算法解作业车间调度问题[J].计算机集成制造系统,2004,10(7):820-824. 被引量:31
  • 3段海滨,王道波,朱家强,黄向华.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326. 被引量:211
  • 4杨阿莉.一种改进蚁群算法在车间作业调度问题中的研究与应用[J].机械与电子,2005,23(4):9-12. 被引量:8
  • 5Dorigo M, Maniezzo V, Colorni A. The ant system: optimization by a colony of cooperating agents [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B (S 1094-6977), 1996, 26(1): 29-41.
  • 6Chambers J B, Barnes J W. Tabu search for the flexible2routing job shop problem [R]// Austin: Technical Report Series ORP 96-10. USA: Department of Mechanical Engineering, The University of Texas at Austin, 1996.
  • 7Jansen K, Solis-Oba R, Sviridenko M I. A linear time approximation scheme for the job shop scheduling problem [C]//Dorit S Hochbaum, Klaus Jansen, Jose D P Rolin, Alistair Sinclair, eds. Proceedings of the Second International Workshop on Approximation Algorithms (APPROX 99). Berkeley: Springer, 1999.
  • 8Leng Sheng, Wei Xiaobin, Zhang Weny. Improved aco scheduling algorithm based on flexible process [J]. Transactions of Nanjing University of Aeronautics & Astronautics (S 1005 - 1120), 2006, 23 (2): 154-160.
  • 9Hisao I, Shina M, Hides T. Modified Simulated Annealing Algorithms for the Flow Shop Sequencing Problem [J]. Euro J. of Operation Research (S0377-2217), 1995, 81(2): 388-398.
  • 10Cook W J.Combination optimization[M].New York:Wiley- Interseience, 1998 : 241-272.

共引文献43

同被引文献39

引证文献9

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部