期刊文献+

基于最大池的谱特征匹配算法

A spectral feature matching algorithm based on maximum pool
下载PDF
导出
摘要 为了提高基于谱特征的图像匹配算法的精度和鲁棒性,提出了一种基于最大池的谱特征匹配算法。首先,利用图像特征点邻域信息提取具有旋转不变性和亮度线性变化不变性的谱特征;其次,将以谱特征描述的特征点作为节点、特征点之间的欧氏距离作为边构造属性关系图,将图像匹配问题转化为图匹配问题;最后,引入最大池匹配策略获取图匹配结果。大量实验结果表明,该算法提高了谱特征匹配算法的精度和鲁棒性。 In order to improve the accuracy and robustness of image matching algorithms based on spectral feature,a spectral feature matching algorithm based on maximum pool is proposed.Firstly,we use the neighborhood information of image feature points to extract spectral features that are invariant to rotation and the linearity of brightness changes.Secondly,we use the feature points described by spec-tral features as nodes and the Euclidean distance between feature points as edge properties,and trans-form the image matching problem into graph matching problem.Finally,the maximum pool matching strategy is introduced to obtain the graph matching results.A large number of experimental results show that the proposed algorithm improves the accuracy and robustness of the spectral feature matching algorithm.
作者 鲍文霞 余国芬 胡根生 阎少梅 BAO Wen-xia;YU Guo-fen;HU Gen-sheng;YAN Shao-mei(School of Electronics and Information Engineering,Anhui University,Hefei 230601;Anhui Province Key Laboratory of Polarization Imaging Detection Technology,Hefei 230031,China)
出处 《计算机工程与科学》 CSCD 北大核心 2018年第3期494-499,共6页 Computer Engineering & Science
基金 国家自然科学基金(61401001 61501003) 安徽省自然科学基金(1408085MF121) 偏振光成像探测技术安徽省重点实验室开放基金
关键词 谱特征 最大池 图像匹配 spectral feature maximum pool image matching
  • 相关文献

参考文献2

二级参考文献35

  • 1王年,范益政,韦穗,梁栋.基于图的Laplace谱的特征匹配[J].中国图象图形学报,2006,11(3):332-336. 被引量:32
  • 2Chung Fan R K. Spectral graph theory [ M ]. Providence: American Mathematical Society, 1997.
  • 3Scott G L,Longuet-Higgins H C. An algorithm for associa- ting the features of 2 images [ J]. Proceedings of the Royal Society London B :Biological Sciences, 1991,2d4:21-26.
  • 4Shapiro L S, Brady J M. Feature-based correspondence:an eigenvector approach [ J]. Image Vision Computing, 1992, 10(5) :283-288.
  • 5Carcassoni M, Hancock E R. Spectral correspondence for point pattern matching [ J ]. Pattern Recognition,2003, 36 (1) :193-204.
  • 6Tang J, Liang D, Wang N, et al. A Laplacian spectral method for stereo correspondence [ J ]. Pattern Recogni- tion Letters,2007,28(12) : 1391-1399.
  • 7Mohar B, Juvan Martin. Some applications of Laplace ei- genvalues of graphs [ M ] // Ham G, Sabiussi G. Graph symmetry: algebraic methods and applications. Dordrecht: Kluwer Academic Publishers, 1997:227- 275.
  • 8Grone R, Merris R, Sunder V S. The Laplacian spectrum of a graph [ J ]. SIAM Journal Matrix Analysis Applica- tions, 1990,11 (2) :218- 238.
  • 9Merris R. Laplacian matrices of graphs: a survey [ J ]. Li-near Algebra and Its Applications, 1994, 197/198 : 143- 176.
  • 10Oliveira C S, de Lima L S, de Abreu N M M, et al. Bounds on the Q-spread of a graph [ J ]. Linear Algebra and Its Applications,2010,432(9):2342-2351.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部