期刊文献+

矩阵乘积关于广义逆的交换律与混合交换律

Commutative Laws and Mixed Commutative Laws of Matrix Multiplication on Generalized Inverse
下载PDF
导出
摘要 运用矩阵秩方法和奇异值分解分别对两个矩阵乘积关于{1,2,3}-逆与{1,3,4}-逆的交换律以及混合交换律进行了研究,得出了两个矩阵乘积关于{1,2,3}-逆与{1,3,4}-逆的交换律以及混合交换律成立的充分必要条件. Using the matrix rank method and singular value decomposition,the commutative laws and mixed commutative laws of matrix multiplication on{1,2,3}-inverse and{1,3,4}-inverse were studied.Then necessary and sufficient conditions about the commutative laws and mixed commutative laws of matrix multiplication on{1,2,3}-inverse and{1,3,4}-inverse were established respectively.
作者 刘林林 缪迎迎 李莹 LIU Lin-lin;MIAO Ying-ying;LI Ying(School of Mathematical Sciences,Liaocheng University,Liaocheng 252059,China)
出处 《聊城大学学报(自然科学版)》 2017年第4期8-14,共7页 Journal of Liaocheng University:Natural Science Edition
基金 国家自然科学基金项目(11301247) 大学生创新创业训练计划项目(201410447001)
关键词 {i j k}-逆 秩方法 奇异值分解 交换律 {i,j,k}-inverse matrix rank method singular value decomposition commutative laws
  • 相关文献

参考文献3

二级参考文献12

  • 1郭文彬,周尚启,张丽梅.奇异值分解中非奇异矩阵的性质结构[J].聊城大学学报(自然科学版),2005,18(1):11-15. 被引量:4
  • 2郭文彬,魏木生.奇异值分解及其在广义逆理论中的应用[M].北京:科学出版社,2008:14-15.
  • 3[1]M. Wei and W. Guo. Reverse order laws of least squares g-inverses and minimum norm g-inverses of products of two matrices[J].Linear Algebra Appl. , 2002,342 : 117 ~ 132.
  • 4[2]H. Zha. The restricted singular decomposition of matrix triplets[J]. SIAM. J. Matr. Anal. Appl. , 1991,12:172~194.
  • 5[3]B. De Moor and H. Zha. A tree of generalizations of the ordinary singular value decomposition[J]. Linear Algebra Appl. , 1991,147: 469~500.
  • 6Ben-Israel A,Greville T N E.Generalized inverses:theory and applications[M].New York:John Wiley & Sons,1974.
  • 7G Marsaglia,Styan G P H.Equalities and inequalities for ranks of matrices[J].Linear and multilinear Algebra,1974,(2):269-292.
  • 8Tian Y G.More on maximal and minimal ranks of Schur complements with applications[J].Appl Math Comput,2004,152:675-692.
  • 9BEN-ISRAEL A, GREVILE T N E. Generalized Inver- ses: Theory and Applications[M]. New York: John Wi- ley & Sons, 1974.
  • 10郭文彬,魏木生.奇异值分解及其在广义逆理论中的应用[M].北京:科学出版社,2008.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部