期刊文献+

采用拉普拉斯尺度混合先验的结构化近似消息传递算法 被引量:2

Structured Approximate Message Passing Algorithm with a Laplacian Scale Mixture Prior
下载PDF
导出
摘要 为了准确有效地实现自然图像的压缩感知重构,提出一种使用拉普拉斯尺度混合(Laplacian Scale Mixture,LSM)先验的结构化近似消息传递(Approximate Message Passing,AMP)算法.利用LSM模型构建AMP算法的高阶统计约束,将压缩感知重构问题转化为先验信息估计问题和奇异值最小化问题.首先,用LSM分布刻画相似块矩阵奇异值的稀疏性,其中该稀疏性指示了图像块的相似性,因此LSM模型被用来描述图像的非局部相似结构;然后,通过期望最大化算法估计LSM模型的尺度参数,得到可靠的先验信息;最后,由AMP算法求解奇异值最小化问题,实现图像的精确重构.实验结果表明,提出的结构化AMP算法的图像重构质量优于多种主流的压缩感知图像重构算法. In order to reconstruct natural images from compressive sensing(CS)measurements accurately and effectively,a novel structured approximate message passing algorithm using a Laplacian scale mixture(LSM)prior is proposed.The higher-order statistical constraint of the AMP algorithm is created by the LSM model,turning the CS recovery problem into a prior information estimation problem and a singular value minimization problem.Firstly,we use the LSM distribution to model the sparsity of the singular values of the matrices built by similar patches,which denotes the similarity of image patches,and thus utilize the LSM model to describe the nonlocal similarity of images.Secondly,to obtain reliable prior information,the scale parameters of the LSM model are estimated through the use of the expectation-maximization(EM)algorithm.Finally,the singular value minimization problem is solved by the AMP algorithm to achieve the accurate image reconstruction.Experimental results show that the reconstruction quality of our structured AMP algorithm is superior to the state of art CS reconstruction algorithms.
作者 谢中华 马丽红 XIE Zhong-hua;MA Li-hong(School of Electronic and Information Engineering,South China University of Technology,Guangzhou,Guangdong 510641,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2018年第3期520-528,共9页 Acta Electronica Sinica
基金 国家自然科学基金(No.61471173)
关键词 压缩感知 近似消息传递 拉普拉斯尺度混合先验 非局部相似性 期望最大化 compressive sensing(CS) approximate message passing(AMP) Laplacian scale mixture(LSM)prior nonlocal similarity expectation-maximization
  • 相关文献

参考文献2

二级参考文献47

  • 1李恒建,尹忠科,王建英.基于量子遗传优化算法的图像稀疏分解[J].西南交通大学学报,2007,42(1):19-23. 被引量:21
  • 2Vincent Pascal,Bengio Yoshua.Kernel matching pursuit[J].Machine Learning,2002,48:165-187.
  • 3Cevher V,Krause A.Greedy dictionary selection for sparse representation[J].IEEE Journal of Selected Topics Signal Processing,2011,5(5):979-988.
  • 4Sun P,Yao X.Sparse approximation through boosting for learning large scale kernel machines[J].IEEE Transactions on Neural Networks,2010,21(6):883-894.
  • 5Jianwu Li,Yao Lu.Refining kernel matching pursuit[J].Lecture Notes in Computer Science,2010,6064(1):25-32.
  • 6V P Thafasal Ijyas,S M Sameer.Low complexity metaheuristics for joint ML estimation problems[J].Applied Mathematics and Computation,2014,230:342-358.
  • 7Rana S,Jasola S,Kumar R.A review on particle swarm optimization algorithms and their applications to data clustering[J].Artificial Intelligence Review,2011,35(3):211-222.
  • 8Candes E,Romberg J,Tao T.Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J]. Information Theory,IEEE Transactions on,2006,52(2):489-509.
  • 9David L Donoho.Compressed sensing[J]. Information Theory,IEEE Transactions on,2006,52(4):1289-1306.
  • 10Bioucas-Dias JM,Figueiredo MA.A new TwIST:Two-step iterative shrinkage thresholding algorithms for image restoration[J]. Image Processing,IEEE Transactions on,2007,16(12):2992-3004.

共引文献19

同被引文献13

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部