期刊文献+

求解变量重叠型大尺度优化问题的相关性学习协同演化策略

Cooperative Coevolution with Correlation Learning Between Variables for Large Scale Overlapping Problem
下载PDF
导出
摘要 协同演化是解决大尺度连续优化问题的一种有效策略.但是,对于决策变量重叠型(决策变量不可分且相互依赖)的高维问题,其分组方法可能会误导算法的搜索.针对这一情况,本文提出一种全新的协同演化策略(Differential Evolution Cooperative Coevolution with Correlation Learning Between Variables,DECC-CLV),其思想是首先计算演化种群分布所包含的主特征轴,然后计算各维决策变量在主轴上的投影值并利用它们之间的正负相关性进行分组.该算法在迭代过程中,利用期望最大化算法对种群进行概率主成分分析,并根据决策变量在当前种群主轴上的投影值大小关系对其进行动态分组.通过和目前主流的演化算法在CEC2013的第三类函数上的仿真试验和分析,验证了算法的有效性和适用性. Cooperative co-evolution(CC)is an effective strategy to solve large-scale continuous optimization problem.However,its grouping method may mislead the search direction when solving the large-scale overlapping problem(decision variables are non-separable and interact with each other).In order to overcome this issue,we propose a differential evolution cooperative coevolution with correlation learning between variables(DECC-CLV)to improve the performance of CC.DECC-CLV firstly detects the positive and negative correlations of variables based on the projected value of decision variables on the principal component of the population,and then groups variables into different groups.During the evolutionary process,DECC-CLV employs the expectation maximization algorithm for probabilistic principal component analysis on the population to deduce the complexity.Comparing with the state-of-the-art CCs on the large-scale overlapping benchmark functions on CEC2013,the experimental results verified the effectiveness and applicability of our proposed algorithm.
作者 王豫峰 董文永 董学士 WANG Yu-feng;DONG Wen-yong;DONG Xue-shi(Computer School,Wuhan University,Wuhan,Hubei 430072,China;Software School,Nanyang Institute of Technology,Nanyang,Henan 473000,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2018年第3期529-536,共8页 Acta Electronica Sinica
基金 国家自然科学基金(No.61170305 No.61672024) 河南省高等学校重点科研项目计划(No.17A520046)
关键词 大尺度优化问题 相关性决策变量 协同演化 大尺度优化问题分解 large-scale optimization problem variables correlation cooperative co-evolution large-scale optimization problem decomposition
  • 相关文献

参考文献3

二级参考文献25

  • 1付琨,孙真真,吴一戎.基于Beta-Prime统计模型和QGD分类器的SAR图像地物分类方法[J].电子学报,2003,31(z1):2163-2166. 被引量:2
  • 2雷德明,严新平,吴智铭.多目标混沌进化算法[J].电子学报,2006,34(6):1142-1145. 被引量:20
  • 3刘向阳,许稼,彭应宁.极不均匀合成孔径雷达杂波建模及恒虚警检测[J].电子学报,2007,35(9):1617-1621. 被引量:7
  • 4Oliver C J,Quegan S. Understanding Synthetic Aperture Radar Images[M].London:Artech House,1998.
  • 5Novak L M,Owirka G J,Brower W S,Weaver A L. The automatic target-recognition system in SAIP[J].The Lincoln Laboratory Journal,1997,(02):187-202.
  • 6Frery A C,Muller H,Freitas C C. A model for extremely heterogeneous clutter[J].1EEE Transactions on GRS,1997,(03):648-659.doi:10.1109/36.581981.
  • 7Mejail M E,Jacobo-berlles J C,Frery A C. Classification of SAR images using a general and tractable multiplicative model[J].International Journal of Remote Sensing,2003,(18):3565-3582.doi:10.1080/0143116021000053274.
  • 8Marques R C P,Medeiros F N S,Nobre J. SAR image segmentation based on level set approach and G-A'0 model[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,(10):2046-2057.
  • 9Freitas C C,Frery A C,Correia A H. The polarimetric G distribution for SAR data analysis[J].Environmetrics,2005,(01):13-31.doi:10.1002/env.658.
  • 10Tison C,Nicolas J-M,Tupin F,Maitre H. A new statistical model for Markovian classification of urban areas in high-resolution SAR images[J].IEEE Transactions on Geoscience and Remote Sensing,2004,(10):2046-2057.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部