期刊文献+

群体简单宣告逻辑 被引量:1

Group Simple Announcement Logic
下载PDF
导出
摘要 群体宣告逻辑在公开宣告逻辑基础上增加用于刻画群体宣告的算子,其中的"群体宣告"是指群内个体的一阶或高阶知识被同时、公开、真实地宣告。然而,很多场合下通常并不接受个体宣告高阶知识。本文所探讨的群体简单宣告逻辑只允许群内个体宣告一阶知识,这与此前版本在一些性质上存在差别。文章的主要成果是群体简单宣告逻辑的表达能力和公理系统等结论,以及对有穷规则在群体宣告逻辑中不可靠、但在群体简单宣告逻辑中具有可靠性的证明。 Group announcement logic(GAL)extends public announcement logic with group announcement operators,where a“group announcement”is a combination of first-or higher-order knowledge being simultaneously,publicly and truthfully announced by a given group of agents.In real situation,however,group announcements of higher-order knowledge is often not allowed.We introduce a variant of group announcement logic,called Group Simple Announcement Logic(GSAL),which only allows group announcements of first-order knowledge,and differs from GAL in some logical properties.Main achievements of this paper is the expressivity results and complete axiomatization of GSAL,including a proof of the unsoundness of a finitary rule in GAL and its soundness in GSAL.
作者 徐康 王轶 Kang Xu;YìN Wáng(Zhejiang University of Water Resources and Electric Power;Philosophy Department Center for the Study of Language and Cognition Zhejiang University)
出处 《逻辑学研究》 CSSCI 2018年第1期1-22,共22页 Studies in Logic
基金 国家社科基金青年项目(16CZX048)
  • 相关文献

参考文献1

二级参考文献8

  • 1E Balbiani, 2015, "Putting right the wording and the proof of the Truth Lemma for APAL", Manuscript.
  • 2P. Balbiani, A. Baltag, H. van Ditmarsch, A. Herzig, T. Hoshi and T. D. Lima, 2008, "'Knowable' as 'Known after an announcement'", Review of Symbolic Logic, 1(3): 305-334.
  • 3E Balbiani and D. Vakarelov, 2001, "Iteration-free PDL with intersection: A complete axiomatization". FundamentaInt"ormaticce, 45: 173-194.
  • 4R. Goldblatt, 1993, Mathematics of Modality, Stanford, Califomia: CSLI Publications.
  • 5D. Harel, 1979, First-Order Dynamic Logic, New York: Springer-Verlag.
  • 6M. Kaneko, T. Nagashima, N.-Y. Suzuki and Y. Tanaka, 2002, "A map of common knowledge logics", Studia Logica, 71(1): 57-86.
  • 7J. Plaza, 1989, "Logics of public communications", Proceedings of the 4th ISMIS, pp. 201- 216, Oak Ridge National Laboratory.
  • 8V. Rybakov, 1997, Admissibility of Logical Inference Rules, Amsterdam: Elsevier Sci- ence.

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部