摘要
弗雷格《算术的基本规律》中二阶逻辑理论FL是不一致的,在语法上可以推演出罗素悖论,在语义上,矛盾于康托尔定理,进而是不可满足的。通过仔细考察弗雷格的逻辑系统FL、FL的子系统FA以及算术还原为逻辑的推理过程,可以看出弗雷格在用公理五与概念的数的显定义推演出休谟原则后,不再实质依赖于公理五与概念的数的显定义。休谟原则与带完整二阶存在概括规则的二阶逻辑组成的系统FA是一致的,并且足以推出戴德金皮亚诺系统的五条公理,这实质上给出了不同于皮亚诺公理系统的另外一种算术公理化系统。根据自然数的定义,弗雷格实质上利用数学归纳法证明了每个自然数都有后继存在,加上后继的唯一性,弗雷格就保证了无穷多的自然数的存在。
The logical system of Frege’s The Basic Laws of Arithmetic,namely,FL is inconsistent,and able to derive Russell’s paradox.And according to Cantor’s theorem,FL can not be satisfied by any model.But the sub-systerm of FL,namely FA,which consist of full second order logic and Hume principle as its sole non-logical axiom is consistent and able to derive all Peano’s axioms.Thus FA is essentially a different axiomatization of second order arithmetic.According to Frege’s definition of natural number,he proved that every number has a successor essentially with the principle of mathematical induction,and with the theorem that every number has only one successor,the existence of infinite numbers is guaranteed.
作者
杨海波
Haibo Yang(School of Politics and Administration,Wuhan University of Technology)
出处
《逻辑学研究》
CSSCI
2018年第1期51-61,共11页
Studies in Logic
基金
教育部人文社会科学青年基金项目"新弗雷格主义研究"(项目编号:14YJC72040001)资金资助