摘要
提出一个混合的抽取式摘要优化框架,在优化单词层级信息的同时,将句子层级信息作为优化约束。在约束条件下,该优化框架迭代地进行摘要文本中单元的替换,得到不断逼近目标函数的最优解。与传统方法对比,该框架在DUC数据集上获得ROUGE评测的高分,证明了该框架的有效性。
In order to fuse word-level and sentence-level information from different semantic spaces,the authors propose a hybrid optimization framework to optimize word-level information while simultaneously incorporate sentence-level information as constraints.The optimization is conducted by iterative unit substitutions.The performance on DUC benchmark datasets demonstrates the effectiveness of proposed framework in terms of ROUGE evaluation.
作者
林心宜
严睿
赵东岩
LIN Xinyi;YAN Rui;ZHAO Dongyan(Institute of Computer Science and Technology,Peking University,Beijing 100080;School of Electronic Engineering and Computer Science,Peking University,Beijing 100871)
出处
《北京大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2018年第2期229-235,共7页
Acta Scientiarum Naturalium Universitatis Pekinensis
基金
国家自然科学基金(61672058)
国家高技术研究发展计划(2015AA015403)
CCF-腾讯科研基金资助
关键词
抽取式摘要生成
词层级信息
句层级信息
混合迭代优化框架
extractive summarization
word-level information
sentence-level information
hybrid optimization framework