期刊文献+

How does organic matter affect the physical and mechanical properties of forest soil? 被引量:1

How does organic matter affect the physical and mechanical properties of forest soil?
下载PDF
导出
摘要 Determining the physical and mechanical properties of soil and its behavior for engineering projects is essential for road construction operations. One of the most important principles in forest road construction, which is usually neglected, is to avoid mixing organic matter with road materials during excavation and embankment construction. The current study aimed to assess the influence of organic matter on the physical properties and mechanical behaviors of forest soil and to analyze the relation between the amount of organic matter and the behavior of forest soil as road material. A typical soil sample from the study area was collected beside a newly constructed roadbed. The soil was mixed with different percentages of organic matter(control treatment, 5, 10, and 15% by mass) and different tests including Atterberg limits, standard compaction, and California bearing ratio(CBR) tests were conducted on these different soil mixtures. The results showed that soil plasticity increased linearly with increasing organic matter.Increasing the organic matter from 0%(control) to 15%resulted in an increase of 11.64% of the plastic limit and 15.22% of the liquid limit after drying at 110 ℃. Also,increasing the organic matter content reduced the soil maximum dry density and increased the optimum moisture content. Increasing the organic matter from 0 to 15% resulted in an increase of 11.0% of the optimum moisture content and a decrease of 0.29 g/cm;of the maximum dry density. Organic matter decreased the CBR, which is used as the index of road strength. Adding 15% organic matter to the soil resulted in a decrease of the CBR from 15.72 to 4.75%. There was a significant difference between the two drying temperatures(60 and 110 ℃) for the same organic matter mixtures with lower water content values after drying at 60 ℃. The results revealed the adverse influence of organic matter on soil engineering properties and showed the importance of organic matter removal before excavation and fill construction. Determining the physical and mechanical properties of soil and its behavior for engineering projects is essential for road construction operations. One of the most important principles in forest road construction, which is usually neglected, is to avoid mixing organic matter with road materials during excavation and embankment construction. The current study aimed to assess the influence of organic matter on the physical properties and mechanical behaviors of forest soil and to analyze the relation between the amount of organic matter and the behavior of forest soil as road material. A typical soil sample from the study area was collected beside a newly constructed roadbed. The soil was mixed with different percentages of organic matter(control treatment, 5, 10, and 15% by mass) and different tests including Atterberg limits, standard compaction, and California bearing ratio(CBR) tests were conducted on these different soil mixtures. The results showed that soil plasticity increased linearly with increasing organic matter.Increasing the organic matter from 0%(control) to 15%resulted in an increase of 11.64% of the plastic limit and 15.22% of the liquid limit after drying at 110 ℃. Also,increasing the organic matter content reduced the soil maximum dry density and increased the optimum moisture content. Increasing the organic matter from 0 to 15% resulted in an increase of 11.0% of the optimum moisture content and a decrease of 0.29 g/cm^3 of the maximum dry density. Organic matter decreased the CBR, which is used as the index of road strength. Adding 15% organic matter to the soil resulted in a decrease of the CBR from 15.72 to 4.75%. There was a significant difference between the two drying temperatures(60 and 110 ℃) for the same organic matter mixtures with lower water content values after drying at 60 ℃. The results revealed the adverse influence of organic matter on soil engineering properties and showed the importance of organic matter removal before excavation and fill construction.
机构地区 Department of Forestry
出处 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第3期654-659,共6页 林业研究(英文版)
基金 financially supported by the University of Tehran
关键词 Atterberg limits California bearing ratio Hyrcanian forest Organic matter content Soil compaction Atterberg limits California bearing ratio Hyrcanian forest Organic matter content Soil compaction
  • 相关文献

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部