期刊文献+

P2P网贷平台跑路风险识别研究 被引量:2

Research on Running Away Risk Recognition of P2P Lending Platform
下载PDF
导出
摘要 以100家网贷平台数据为例,通过随机森林算法对平台跑路风险进行分析。结果得出随机森林模型对网贷平台的跑路风险等级分类比较准确。月均成交量、月均投资者人数、平台基本信息和注册资本指标对网贷平台跑路风险等级具有重要影响,而平台逾期率、借款用途和资金存管对网贷平台跑路风险等级的重要性相对较低。因此,可以通过平台月均成交量、月均投资者人数、平台基本信息等指标对平台的风险状况进行初步判断,然后做出相应投资决策。并分别从投资者、监管主体和行业自律组织的角度提出防范网贷平台跑路风险的建议。 Taking 100 network loan platform data as an example,it analyzed the risk of platform running risk by random forest algorithm.The result shows that the stochastic forest model can accurately classify the risk level of the runway of the online loan platform.Monthly average volume of traders,the number of monthly investors,the basic information of the platform and the registered capital have an important impact on the risk level of the platform for the operation of the online loan platform.However,the overdue rates,the purpose of borrowing and the deposit of funds on the risk level of the platform The importance is relatively low.Therefore,the monthly average volume of the platform,the average monthly number of investors,the basic information of the platform and other indicators of the platform to determine the initial risk of the situation.And then making the appropriate investment decisions.From the perspective of investors,regulatory bodies and industry self-regulatory organizations put forward proposals to prevent the risk of network loan platform running way.
作者 夏克雨 XIA Ke-yu(College of Management,University of Shanghai for Science and Technology,Shanghai 200093,China)
出处 《中国林业经济》 2018年第2期88-92,共5页 China Forestry Economics
基金 2017上海理工大学教师发展研究项目 沪江基金研究基地专项"电子商务智库"(14008)
关键词 P2P网贷 平台 跑路风险 随机森林 P2P lending Platform Running away risk Random Forest
  • 相关文献

参考文献4

二级参考文献33

  • 1罗明雄.互联网金融[M].北京:中国财政经济出版社.2014.5.33,134.
  • 2Michael Klafft.Peer to peer Lending:Auctioning Microcredits over the Internet[A].Proceedings of the International Conference on Information Systems[J].Technology and Management,2008(2):1-8.
  • 3Eunkyoung Lee,Byungtae Lee,Myungsin Chae.Herding Behavior in online P2P Lending:An Empirical Investigation[J].Journal Electronic Commerce Research and Applications,2012,11(5):495-503.
  • 4Stat Soft Inc.Electronic Statistics Textbook[EB].Tulsa(http://www.statsoft.com/textbook),2011.
  • 5Zhang G,Patuwo E,and Hu M.Forecasting with Artificial Neural Networks:The State of the Art[J].International Journal of Forecasting,1998(14):35-62.
  • 6Breiman L.Random Forests[J].Machine Learning,2001,45(1):5-32.
  • 7Biau G.Analysis of a Random Forests Model[J].Journal of Machine Learning Research,2012,13(April):1063-1095.
  • 8Malekipirbazari M,Aksakalli V.Risk Assessment in Social Lending via Random Forests[J].Expert Systems with Applications,2015,42(10):4621-4631.
  • 9Duarte, J., S. Siegel, and L. Young. 2012. Trust and Credit: The Role of Appearance in Peer-to-peer Lending. Re- view of Financial Studies, 25 (8) : 2455 - 2484.
  • 10Lin, M., N. R. Prabhala, and S. Viswanathan. 2013. Judging Borrowers by the Company They Keep: Friendship Net- works and Information Asymmetry in Online Peer-to-peer Lend- ing. Management Science, 59 (1) : 17 -35.

共引文献117

同被引文献11

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部