P2P流量识别技术研究综述
摘要
笔者分析了P2P流量识别技术研究的意义,通过对主要的P2P流量识别方法进行系统归纳,从识别机制的角度将现有识别方案分成了三大类:基于端口的识别法、特征识别法、基于机器学习和数据挖掘的方法。并剖析了各类识别方法的原理、涉及的关键问题以及解决方法和国内外研究进展,讨论了各自的优缺点。
出处
《信息与电脑》
2016年第24期112-113,共2页
Information & Computer
二级参考文献17
-
1Moore AW, Zuev D. Internet traffic classification using Bayesian analysis techniques. In: Proc. of the 2005 ACM SIGMETRICS Int'l Conf. on Measurement and Modeling of Computer Systems, Banff, 2005. 50-60. http://www.cl.cam.ac.uk/-awm22 /publications/moore2005internet.pdf.
-
2Madhukar A, Williamson C. A longitudinal study of P2P traffic classification. In: Proc. of the 14th IEEE Int'l Syrup. on Modeling, Analysis, and Simulation. Monterey, 2006. http://ieeexplore.ieee.org/xpl/ffeeabs_all.jsp?arnumber=1698549.
-
3Moore AW, Papagiannaki K. Toward the accurate identification of network applications. In: Dovrolis C, ed. Proc. of the PAM 2005. LNCS 3431, Heidelberg: Springer-Verlag, 2005.41-54.
-
4Karagiannis T, Papagiannaki K, Faloutsos M. BLINC: Multilevel traffic classification in the dark. In: Proc. of the ACM SIGCOMM. Philadelphia, 2005. 229-240. http://conferences.sigcomm.org/sigcomm/2005/paper-KarPap.pdf.
-
5Roughan M, Sen S, Spatscheck O, Dutfield N. Class-of-Service mapping for QoS: A statistical signature-based approach to IP traffic classification. In: Proc. of the ACM SIGCOMM Internet Measurement Conf. Taormina, 2004. 135-148. http://www.imconf.net/imc-2004/papers/p 135-roughan.pdf.
-
6Zuev D, Moore AW. Traffic classification using a statistical approach. In: Dovrolis C, ed. Proc. of the PAM 2005. LNCS 3431, Heidelberg: Springer-Verlag, 2005. 321-324.
-
7Nguyen T, Armitage G. Training on multiple sub-flows to optimise the use of Machine Learning classifiers in real-world IP networks. In: Proc. of the 31 st IEEE LCN 2006. Tampa, 2006. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4116573.
-
8Eerman J, Mahanti A, Arlitt M. Internct traffic identification using machine learning techniques. In: Proc. of the 49th IEEE GLOBECOM. San Francisco, 2006. http://pages.cpsc.ucalgary.ca/-mahanti/papers/globecom06.pdf.
-
9Erman J, Arlitt M, Mahanti A. Traffic classification using clustering algorithms. In: Proc. of the ACM SIGCOMM Workshop on Mining Network Data (MineNet). Pisa, 2006. http://conferences.sigcomm.org/sigcomm/2006/papers/minenet-01.pdf.
-
10Bernaille L, Teixeira R, Salamatian K. Early application identification. In: Proc. of the Conf. on Future Networking Technologies 2006 (CoNEXT 2006). Lisboa, 2006. http://portal.acm.org/citation.efm?id=1368445.
共引文献170
-
1高文才,曹帅.基于MRF-FCM算法的矿井运动目标图像优化[J].工矿自动化,2024,50(S01):69-73.
-
2邓建国,张素兰,张继福,荀亚玲,刘爱琴.监督学习中的损失函数及应用研究[J].大数据,2020,6(1):60-80. 被引量:39
-
3代志康,吴秋新,程希明.一种基于ResNet的网络流量识别方法[J].北京信息科技大学学报(自然科学版),2020,35(1):82-88. 被引量:5
-
4陈陆颖,丛蓉,杨洁,于华.P2P Streaming Traffic Classification in High-Speed Networks[J].China Communications,2011,8(5):70-78. 被引量:1
-
5赵树鹏,陈贞翔,彭立志.基于流中前5个包的在线流量分类特征[J].济南大学学报(自然科学版),2012,26(2):156-160. 被引量:3
-
6孟姣,王丽宏,熊刚,姚垚.基于机器学习的SSH应用分类研究[J].计算机研究与发展,2012,49(S2):153-159. 被引量:2
-
7胡婷,王勇,陶晓玲.网络流量分类方法的比较研究[J].桂林电子科技大学学报,2010,30(3):216-219. 被引量:4
-
8胡婷,王勇,陶晓玲.混合模式的网络流量分类方法[J].计算机应用,2010,30(10):2653-2655. 被引量:8
-
9易兴辉,王国胤,胡峰.一种新的基于粗糙集的动态样本识别算法[J].南京大学学报(自然科学版),2010,46(5):501-506. 被引量:8
-
10刘浩力.多层次压缩决策树在计算机取证中的应用[J].中国信息界,2011(1):60-62.
-
1牛祥.DPI特征匹配算法在P2P流量识别检测的简单应用[J].信息系统工程,2017,30(12):80-82. 被引量:1
-
2王笑竹.精准扶贫的应用和创新[J].西部皮革,2017,39(22):56-56.
-
3王春枝,杜远丽,叶志伟.基于最优ABC-SVM算法的P2P流量识别[J].计算机应用研究,2018,35(2):582-585. 被引量:10
-
4周宇.基于混合现场总线的低成本机器人视觉识别方案[J].科教导刊,2018(2):23-25.
-
5Yin-Wu Bao,Yuan Yuan,Jiang-Hua Chen,Wei-Qiang Lin.Kidney disease models:tools to identify mechanisms and potential therapeutic targets[J].Zoological Research,2018,39(2):72-86. 被引量:12
-
6燕昺昊,韩国栋,黄雅静,王孝龙.非平衡网络流量识别方法[J].计算机应用,2018,38(1):20-25. 被引量:8
-
7王春业,牟梓榕.立案登记制背景下行政滥诉的规制[J].江苏警官学院学报,2018,33(1):25-30. 被引量:2
-
8戴海燕.一种基于机器学习发现服务器开放端口的方法[J].电子技术与软件工程,2018(6):23-23.
-
9李坤.土木工程结构的性能监测系统与损伤识别分析[J].建筑安全,2018,33(3):76-77.
-
10郭宗超,李柯林,王长波.上班族轨道交通刷卡流量可视分析[J].计算机辅助设计与图形学学报,2018,30(4):584-591.