期刊文献+

氧化钙-氢氧化钙热化学储热系统放热数值分析 被引量:3

Numerical study on exothermic process of a CaO-Ca(OH)_2 thermochemical heat storage system
下载PDF
导出
摘要 热化学储热与显热、潜热储热相比,储热密度高且能够实现常温下季节性储热。基于氧化钙-氢氧化钙热化学储热系统,建立了二维轴对称非稳态气固化学反应模型,对直接传热式氧化钙-氢氧化钙储热装置的放热过程进行了研究,并分析了压力、流量、床体孔隙率、床体高度等参数对放热过程的影响。该模型耦合了气固化学反应、多孔介质内的传热传质和流体流动。模拟结果表明,在反应床内存在一个反应速率较快的区域,随着放热的进行该区域由入口逐渐向出口移动;压力、流量分别是影响出口温度、放热功率的主要因素;改变反应物高度,系统的最大放热功率不变。 Compared to sensible and latent heat storage,thermochemical heat storage has a higher heat storage density,achieving seasonal heat storage at ambient temperature.This paper concerns a CaO-Ca(OH)2 heat storage system.A 2D axisymmetric transient model was developed to study the exothermic process of the system,which is essential for reactor design and operation condition optimization.The effect of different reaction conditions and reaction bed parameters on the exothermic process was investigated systematically.The results indicated a rapid reaction zone in the reaction bed with the exothermic reaction moving from the inlet to the outlet.The outlet temperature was mainly influenced by the steam pressure and the reaction exothermic power was mainly influenced by the flow rate.The results also showed that the height of reaction bed had no effect on the maximum reaction exothermic power.
作者 邓畅 潘智豪 闫君 赵长颖 DENG Chang;PAN Zhihao;YAN Jun;ZHAO Changying(Institute of Engineering Thermophysics,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《储能科学与技术》 CAS CSCD 2018年第2期94-100,共7页 Energy Storage Science and Technology
基金 国家重点基础研究发展计划(2013CB228303) 国家自然科学基金(51706130)
关键词 热化学储热 氢氧化钙 数值计算 thermochemical heat storage calcium hydroxide numerical computation
  • 引文网络
  • 相关文献

参考文献1

二级参考文献18

  • 1N'Tsoukpoe K Edem. Liu Hui. Le Pierres Nolwenn. LuoLingai. A review on long-term sorption solar energy storage [J]. Renewable &. Sustainable Energy Reviews. 2009.13: 2398-2396.
  • 2Medrano M. Gil A. Martorell I. Potau X. Cabeza L F. State of the art on high temperature thermal energy storage for power generation ( II ): Case studies [J]. Renewable &. Sustainable Energy Reviews. 2010. 14: 56-72.
  • 3Antoni Gil,Marc Medrano. Ingrid Martorell. Ana Lazaro. Pablo Dolado. Belen Zalba. Luisa F Cabeza. State of the art on high temperature thermal energy storage for power generation ( I ): Concepts. materials and modellization [J]. Renewable and Sustainable Energy Reviews. 2010. 14: 31-55.
  • 4Faouzi Askri. Abdelmajid Jemn. Sassi Ben Nasrallah. Study of two-dimensional and dynamic heat and mass transfer in a metal-hydrogen reactor [J]. International Journal oj Hydrogen Energy. 2003. 28: 537-557.
  • 5Felderhoff M. Bogdanovic B. High temperature metal hydrides as heat storage materials for solar and related applications [J]. International Journal oj Molecular Sciences. 2009. 10: 325-344.
  • 6BogdanovicB.Magnesium hydride: a homogeneous-catalysed synthesis and its use in hydrogen storage [J]. International Journal oj Hydrogen Energy. 1984. 9 (11): 937-941.
  • 7Bogdanovic B. Spliethoff B. Active MgHz-Mg systems for hydrogen storage[J]. Inteγnational J ouγnal oj Hydrogen Energy. 1987. 12(12): 863-873.
  • 8Bogdanovic B. Ritter A. Spliethoff B. Active MgHz-Mg systems for reversible chemical energy storage [J]. Angewandte Chemie International Edition in English. 1990. 29 (3): 223-328.
  • 9Bogdanovic B. Hartwig T H. Spliethoff B. Thedevelopment. testing and optimization of energy storage materials based on the MgHz-Mg system [J]. International Journal oj Hydrogen Energy. 1993. 18 (7): 575-589.
  • 10Bogdanovic B. Ritter A. Spliethoff B. StrapburgerK. Aprocess steam generator based on the high temperature magnesium hydride/magnesium heat storage system[J]. International Journal oj Hydrogen Energy. 1995. 20: 811-822.

共引文献6

同被引文献130

引证文献3

二级引证文献26

;
使用帮助 返回顶部