期刊文献+

2 m级望远镜跟踪架控制系统动态性能分析 被引量:11

Dynamic analysis of two meters telescope mount control system
下载PDF
导出
摘要 为了增强望远镜的抗风载扰动能力,提高望远镜跟踪架的跟踪精度,本文对2m望远镜跟踪架伺服控制系统的动态性能进行了测试和分析。首先,采用正弦扫描信号对望远镜跟踪架的结构和伺服系统进行了频率特性测试;其次,采用基于观测器/卡尔曼滤波器的辨识算法,对跟踪架控制系统的频率特性进行了模型辨识;最后,依据辨识获得的控制模型设计了位置和速度控制器,然后对2m望远镜跟踪架伺服控制系统进行了目标观测实验,实验结果表明:当跟踪最大速度为3.5(°)/s,最大加速度为1(°)/s^2的目标时,方位轴和俯仰轴的最大跟踪误差均小于4.5",跟踪误差的RMS值分别为0.378 6"和0.151 6",实验验证了跟踪架控制系统的良好性能。 In order to enhance the ability of disturbance rejection for the telescope,and improve the tracking accuracy of the telescope mount control system,this paper analysis the dynamic of mount control system for the two meters telescope.Firstly,the frequency response of telescope mount control system is test using swept sine.Secondly,the Observer/Klaman filter algorithm is employed to identify the model for the mount control system.Finally,the position controller and speed controller are designed based on the mount control model.The experimental results of target observation show that max tracking errors of the azimuth and elevation axis are less than 4.5",and the tracking error RMS[JP2]are 0.378 6"and 0.151 6",when the target moving with the max speed 3.5(°)/s[JP]and the max acceleration 1(°)/s 2.The experiments verify the good dynamic of telescope mount control system.
作者 邓永停 李洪文 陈涛 DENG Yong-ting;LI Hong-wen;CHEN Tao(Changchun Institute of Optics,Fine Mechanics and Physics, Chinese Academy of Sciences,Changchun 130033,China)
出处 《光学精密工程》 EI CAS CSCD 北大核心 2018年第3期654-661,共8页 Optics and Precision Engineering
基金 国家自然科学基金青年基金资助项目(No.11603024)
关键词 望远镜 频率响应 模型辨识 伺服系统 telescope frequency response model identification servo system
  • 相关文献

参考文献3

二级参考文献71

  • 1暨绵浩.永磁同步电动机及其调速系统综述和展望[J].微特电机,2007,35(3):49-52. 被引量:24
  • 2王国民.天文光学望远镜轴系驱动方式发展概述[J].天文学进展,2007,25(4):364-374. 被引量:25
  • 3FUNG R F, HSU Y L, HUANG M S. System identification of a dual-stage XY precision positioning table [ J ]. Precision Engineering, 2009,33(1) :71-80.
  • 4BAlK I C,KIM K H,YOUN M J. Robust nonlinear speed control of PM synchronous motor using adaptive and sliding mode control techniques [J]. IEEE Proceedings Electr. Power Appl. , 1998, 145 (4) : 369- 376.
  • 5ZHANG D, LI H. A stochastic-based FPGA controller for an induction motor drive with integrated neural network algorithms[J]. IEEE Trans. Ind. Electron. ,2008,55(2) :551-561.
  • 6KUNG Y S,HUANG CH CH,TSAI M H. FPGA realization of an adaptive fuzzy controller for PMLSM drive[J]. IEEE Trans. Ind. Electron., 2009,56(8) :2923-29352.
  • 7LIN F J,WANG D H,HUANG P K. FPGA-based fuzzy sliding-mode control for a linear induction motor drive[J]. IEEE Proceedings Electr. Power Appl. ,2005,152(5) :1137-1148.
  • 8JEZERNIK K, KORELIC J, HORVAT R. PMSM sliding mode FPGA-based control for torque ripple reduction [J]. IEEE Trans. Power Electron., 2013,28(7) :3549-3556.
  • 9LIN F J, TENG L T, CHANG C K. Adaptive backstepping control for linear-induction-motor drive using FPGA [ C ]. IECON 2006- 32nd Annual Conference on IEEE Industrial Electronics, Paris, 2006.
  • 10HALL T S, HAMBLEN J O. System-on-a- programmable-chip development platforms in the classroom[J]. IEEE Trans. Education, 2004, 47(4) : 502-507.

共引文献41

同被引文献96

引证文献11

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部