期刊文献+

倒向随机微分方程的研究与应用

Research and Application of Backward Stochastic Differential Equations
下载PDF
导出
摘要 倒向随机微分方程在随机微分对策、随机最优控制、偏微分方程以及金融数学等方面的应用中起到了重要的作用。本文阐述了倒向随机微分方程的基本原理,对它的一般性结论进行说明。提出倒向随机微分方程在最优控制中的应用,给出倒向随机微分方程最优控制的数学模型,并给出在最优控制问题中的条件假设以及状态方程,并对其最优性进行了相关的证明。 Backward stochastic differential equations plays an important role in the applications of game,stochastic optimal control,partial differential equations and financial mathematics.In this paper,the basic principle of backward stochastic diferential equation is descrilDed,and its general conclusion is explained.The application of backward stochastic diferential equations in optimal control is presented.A mathiematical model for optimal control of backward stochastic diferential equations is given.The conditional assumptions and state equations in optimal given,and their optimality is proved.
作者 卢金花 LUJin-hua(College of Information Management,Minnan University of Science and Technology,Fujian Shislii,362700,China)
出处 《贵阳学院学报(自然科学版)》 2018年第1期3-5,共3页 Journal of Guiyang University:Natural Sciences
关键词 倒向随机微分方程 最优控制 随机控制 布朗运动 Backward Stochastic Differential Equations#Optimum Control#Stochastic Control#Brownian Movement.
  • 相关文献

参考文献1

二级参考文献15

  • 1Antonelli, F. and Hamadane, S., Existence of the solutions of backward-forward SDE's with continuous monotone coefficients, Statist. Probab. Lett., 2006, 76(14): 1559-1569.
  • 2Delarue, F., On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case, Stochastic Process. Appl., 2002, 99(2): 209-286.
  • 3E1 Karoui, N., Kapoudjian, C., Pardoux, E., Peng, S.G. and Qnenez, M.C., Reflected solutions of backward SDE's, and related obstacle problems for PDE's, Ann. Probab., 1997, 25(2): 702-737.
  • 4E1 Karoui, N., Pardoux, E. and Quenez, M.C., Reflected backward SDEs and American options, In: Numerical Methods in Finance (Rogers, L.C.G. and Talay, D. eds.), Cambridge: Cambridge Univ. Press, 1997.
  • 5Fan, S.J. and Jiang, L., One-dimensional BSDEs with left-continuous, lower semi-continuous and linear- growth generators, Statist. Probab. Lett., 2012, 82(10): 1792-1798.
  • 6Hamadane, S. and Lepeltier, J.-P., Reflected BSDEs and mixed game problem, Stochastic Process. Appl., 2000, 85(2): 177-188.
  • 7Hamadane, S., Lepeltier, J.-P. and Matoussi, A., Double barrier reflected BSDEs with continuous coefficient, In: Backward Stochastic Differential Equations (El Karoui, N. and Mazliak, L. eds.), Pitman Research Notes Math. Series, Vol. 364, Harlow: Longman, 1997, 115-128.
  • 8Hu, Y. and Peng, S.G., Solution of forward-backward stochastic differential equations, Probab. Theory Related Fields, 1995, 103(2): 273-283.
  • 9Huang, Z.Y., Lepeltier, J.-P. and Wu, Z., Reflected forward-backward stochastic differential equations with continuous monotone coefficients, Statist. Probab. Lett., 2010, 80(21/22): 1569-1576.
  • 10Ikeda, N., and Watanabe, S., Stochastic Differential Equations and Diffusion Processes, Second Edition, Amsterdam: North-Holland, 1989.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部