期刊文献+

虚拟内存进程重构与恶意行为扩展识别模型 被引量:1

Reconstruction of Virtual Memory Process and Extended Recognition Model of Malicious Behavior
下载PDF
导出
摘要 为了解决现有虚拟机的恶意行为分析技术检测点单一、抗干扰能力弱、检测结果可信度不高等问题,提出了一种基于虚拟内存进程重构和进程关系识别的虚拟检测技术.通过分析VMware虚拟内存特点,重构进程生命周期中的启动、隐藏、可疑操作、网络通信等序列化行为,并形式化描述为<名称关系、父子关系、时间关系、文件关系、通信关系、用户关系>六元组.进一步地,将六元组扩展为证据链并提出一种基于改进k-means算法的恶意行为识别模型,通过计算不同进程六元组之间的相似度,结合先验知识,使用恶意进程集初始聚类中心,进而辨识出虚拟内存中的恶意进程及其关联性和依赖关系.测试结果表明:1 000个样本中恶意进程的检出率高达91.98%,相比传统内存取证技术该方法重构出的虚拟内存进程信息更加充分,恶意行为判定结果的准确性、可靠性更高. To solve the existing problems of malicious behavior analysis technology based on virtual machine,such as the detection points are single,the anti-interference ability is weak,and the reliability of test results do not have high reliability,a method of multidimensional attribute extraction and reconstruction for virtual memory process was proposed.According to the characteristics of VMware virtual environment memory,the serialized behavior patterns in the lifecycle of the process were reconstructed such as startup,hiding,suspicious operations,network communication,etc.And the formal description as<name relationship,father-son relationship,time relationship,file relationship,communication relationship,user relationship>was given.Ulteriorly,the six tuples were extended into evidence chain and a malicious behavior recognition model based on improved k-means algorithm was proposed.By calculating the similarity between the six tuples of different processes,the set of malicious processes was used to initialize the cluster center combined with a priori knowledge.And then the relevance and dependence of behavioral evidence in virtual memory was analyzed.The test results show that the detection rate of malicious processes in 1 000 samples is as high as 91.98%.Compared with the traditional memory forensics technology,the virtual memory process information reconstructed in this paper is more sufficient,and the result of malicious behavior judgment is more accurate and reliable.
作者 唐彰国 杨玲 李焕洲 张健 TANG Zhangguo;YANG Ling;LI Huanzhou;ZHANG Jian(Institute of Computer Network and Communication Technology,Sichuan Normal University,Chengdu 610101,China)
出处 《北京工业大学学报》 CAS CSCD 北大核心 2018年第4期538-545,共8页 Journal of Beijing University of Technology
基金 四川省教育厅青年基金资助项目(15ZB0026)
关键词 虚拟内存 进程 重构 恶意行为 扩展识别模型 K-MEANS virtual memory process reconstruction malicious behavior extended identification model k-means
  • 相关文献

参考文献5

二级参考文献33

  • 1BAYER U, MOSER A, ICRUEGEL C, et al. Dynamic analysis of malicious code[J]. Journal of Computer Virology, 2006, 2( 1):67 -77.
  • 2VIX API introduce [ EB/OL]. [ 2009 - 01 - 01]. http://www. vmware.com.
  • 3张银奎.调试软件[M].北京:电子工业出版社,2008:194-224.
  • 4LISTON T, SKOUDIS E. On the cutting edge: Thwarting virtual machine detection [ J/OL]. [ 2009 - 02 - 01 ]. http://www.intelguardians. com.
  • 5WILLEMS C, HOLZ T, FREILING F. CWSandbox: Towards automated dynamic binary analysis [ J]. IEEE Security and Privacy, 2007, 5(2) : 32 - 39.
  • 6Silberman P, et al. FUTo uninformed[EB/OL]. 2006. [2010-12-10]. http://uninformed, org/?v= 3&a = 7&t = sumry.
  • 7Jones S T, Arpaci Dusseau A C, Arpaci-Dusseau R H. VMM-based hidden process detection and identification using Lycosid[C] //Proc of the 4th Int Conf on Virtual Execulion Environments (VEE08). New York: ACM, 2008:91-100.
  • 8Litty L, Lagar Cavilla H A, Lie I). Hypervisor support for identifying covertly executing binaries [C] //Proc of the 17th Conf on Security Symp. Berkeley: USENIX, 2008: 243-258.
  • 9Hoglund G. Kernel object hooking rootkits (KOH rootkits) [EB/OL]. 2006. [2008-12-10], http://www, rootkit, corn/ newsread, php?newsid: 501.
  • 10lntel Corporation. Intel: 64 and IA-32 architectures software developer's manual volume 3A: System programming guide, Part 1 [EB/OL]. 2010. [2010-12-10]. http: //www. intel. com/Assets/PDF/manual/253 668. pdf.

共引文献36

同被引文献12

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部