期刊文献+

MRI脑图像海马自动分割方法研究进展

Research Progress of Hippocampus Automatic Segmentation Algorithm in MRI Brain Image
下载PDF
导出
摘要 基于磁共振成像(magnetic resonance imaging,MRI)图像的海马分割是计算机辅助诊断神经系统疾病的重要手段.海马结构边界的精确描绘是计算其体积和对其进行形状测量的前提.手动分割海马过程高度耗时,缺乏重复性,因而发展自动化分割算法具有重要的意义.综述了MRI脑图像海马自动分割方法进展,剖析了每种算法的优缺点,并对今后海马分割方法的发展进行了展望. Segmentation of hippocampus based on magnetic resonance imaging(MRI)is important for computer-aided diagnosis of neurological diseases.The precise delineation of the boundaries of the hippocampus is a prerequisite for calculating its volume and for its shape measurement.Manual segmentation of the hippocampus process is time-consuming and lacks repetitive,therefore,the development of automated segmentation algorithm has vital significance.In this paper,the progress of hippocampus automatic segmentation in MRI brain images was reviewed.The merits and demerits of each algorithm were analyzed.The future development of hippocampal segmentation methodology was also discussed.
作者 杨春兰 初同朋 吴水才 YANG Chunlan;CHU Tongpeng;WU Shuicai(College of Life Science and Bioengineering,Beijing University of Technology,Beijing 100124,China)
出处 《北京工业大学学报》 CAS CSCD 北大核心 2018年第4期636-640,共5页 Journal of Beijing University of Technology
基金 国家自然科学基金资助项目(31640035 71661167001) 北京市自然科学基金资助项目(4162008) 北京市科技新星计划资助项目(Z161100004916157) 北京工业大学第15届研究生科技基金资助项目(ykj-2016-00425)
关键词 海马分割 磁共振成像 自动分割方法 hippocampus segmentation magnetic resonance imaging automatic segmentation
  • 相关文献

参考文献2

二级参考文献36

  • 1Kass M, Witkin A, Terzopoulos D. Snakes: active con- tour models. Int Journal of Computer Vision, 1987, 1 (4) :321-331.
  • 2Caselles V, Kimmel R, Sapiro G. Geodesic active con- tours. International journal of computer vision, 1997. 22 (1) : 61-79.
  • 3Malladi R, Sethian J A, Vemuri B C. Shape modeling with front propagation: a level set approach. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995, 17 (2) :158-175.
  • 4Li C M, Xu C Y, Gui C F, et al. Level set evolution without re-initialization: a new variational formulation. In : Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Los Alami- tos, USA, 2005. 430-436.
  • 5Chan TF, Vese LA. Active contours without edges. IEEE Trans on Image Processing, 2001, 10(2) :266-277.
  • 6Li C M, Kao C Y, John C Fore. Minimization of region- scalable fitting energy for image segmentation. IEEE Trans on Image Processing, 2008, 17(10) :1940-1949.
  • 7Zhang K H, Song H H, Zhang L. Active contours driven by local image fitting energy. Pattern Recognition, 2010 (43) :1199-1206.
  • 8Zhang K H, Zhang L, Song H H, et al. Active contours with selective local or global segmentation: A new formu- lation and level set method. Image and Vision Compu- ting, 2010, 28(4):668-676.
  • 9Li C M, Xu C Y, Gui C F, et al. Distance regularized level set evolution and its application to image segmenta- tion. IEEE Trans on Image Processing, 2010, 19( 12): 3243-3253.
  • 10Chodorowski A, Mattsson U, Langille M, et al. Color le- sion boundary detection using live wire. In: Proceedings of SPIE Medical Imaging: Image Processing, Bellingham, USA, 2005. 1589-1596.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部