摘要
随着城市机动车保有量的不断增加,交通拥堵问题变得日益严重。作为一个有效的方法,模型预测控制(MPC)已经被应用于城市交通路网的控制中。然而由于需要在线进行优化,模型预测控制的计算负荷巨大,限制了其在对实时性要求比较高的场景中的应用。针对该问题,基于存储转发模型将显式模型预测控制(EMPC)引入大型交通路网的交通信号控制问题中。EMPC将多参数规划理论引入到线性时不变系统的约束二次优化控制问题的求解中,通过离线计算得到对应每个状态分区上的状态反馈最优显式控制律。实验结果显示,由于将在线优化过程转变为查表过程,EMPC可以显著提升交通信号控制的效率。
Urban traffic congestion becomes more and more severe and leads to the rapid growth of vehicles.As an effective approach,Model Predictive Control(MPC)is applied to control urban traffic networks.However,a key limitation of MPC is the potentially high online computational complexity,which limits its application in transportation.This paper introduces Explicit Model Predictive Control(EMPC)and designs a transportation signal controller based on the store-and-forward model for the traffic flow process in large scale urban traffic network.EMPC transfers the repeated online signal optimization computation to offline by multi-parametric Quadratic Programming(mp-QP),and provides an explicit optimal control law.The searching the lookup table online can obtain the explicit model control law for current states.The simulation experiments show that the EMPC approach is a breakthrough method to reduce the on-line computational complexity,and to increase the applicability of the EMPC in real-life traffic networks.
作者
陆可
杜萍萍
邹启鸣
何天嘉
LU Ke;DU Pingping;ZOU Qiming;HE Tianjia(School of Management Science and Engineering,Anhui University of Technology,Anhui Maanshan,243000 China)
出处
《机械设计与制造工程》
2018年第3期11-16,共6页
Machine Design and Manufacturing Engineering
基金
安徽省教育厅自然科学基金资助项目(KJ2016A087)
安徽工业大学校青年教师科研基金资助项目(QZ201420)
关键词
显式模型预测控制
交通信号
存储转发模型
智能交通系统
explicit model predictive control
signal split
store and forward model
intelligent transportation control.