期刊文献+

基于历史数据的测控系统指标预测方法探索 被引量:7

Research on Index Forecasting Methods for Space TT&C System Based on Historical Data
下载PDF
导出
摘要 目前对航天测控系统进行故障预测与健康管理成为提高系统安全和可靠性的新发展方向。但已有的方式,如监控系统、自动化测试等,只能对系统进行实时监测或者事后分析。如何让测控系统在实时监测自身状态的基础上,能提前预估系统未来指标状态,从而更好地预防系统可能发生的故障,成为一条新的测控系统发展思路。在经典测控系统的故障识别和预测技术基础之上,针对测控系统关键指标预测的问题,探索基于历史数据的指标预测方法,具体分析基于SVR的单步和多步指标预测方法,并使用实测数据进行试验和分析。与Ridge、Lasso等传统线性回归方法相比,使用SVR进行指标预测更为准确。 At present Prognostic and Health Management(PHM)becomes the new development direction to improve the safety and reliability of space TT&C system.But the existing means,such as monitoring system and automated testing,can only monitor the system timely.How to predict the future state of the TT&C system based on the real-time monitoring,so as to prevent the occurrence of system failure,becomes a new idea for TT&C system development.On the basis of the classical fault identification and prediction technology of TT&C system,this paper studies the index forecasting methods based on the historical data for the key index prediction of TT&C system.The single step and multi-step prediction methods based on SVR are analyzed in detail and they are verified by the measurement data of TT&C system.Compared with the current Ridge,Lasso and other traditional linear regression methods,the prediction methods based on SVR are more accurate for the index forecasting of the TT&C system.
作者 杨罗兰 朱宏涛 董伟升 仇雯钰 于晓黎 Yang Luolan;Zhu Hongtao;Dong Weisheng;Qiu Wenyu;Yu Xiaoli(Beijing Research Institute of Telemetry,Beijing 100094,China)
出处 《遥测遥控》 2018年第2期14-20,共7页 Journal of Telemetry,Tracking and Command
基金 国防重点项目
关键词 指标预测 机器学习 SVR 故障预测与健康管理 Index forecasting Machine learning SVR PHM
  • 相关文献

参考文献3

二级参考文献20

  • 1邓小涛,吕波,江帆,周强.航空电子装备的故障预测法[J].舰船电子工程,2004,24(5):125-127. 被引量:3
  • 2王玲,薄列峰,刘芳,焦李成.稀疏隐空间支持向量机[J].西安电子科技大学学报,2006,33(6):896-901. 被引量:8
  • 3Smola A J,Scholkopf B.A tutorial on support vector regression[J]. Statistics and Computing,2004,14(3) : 199-222.
  • 4Steinwart L.Sparseness of support vector machine[J].Journal of Machine Learning Research,2003,4:1071-1105.
  • 5Burges C J C.Simplified support vector decision rules[C]//Saitta L. Proc of 13th International Conference on Machine Learning.San Francisco,USA:Morgan Kaufmann, 1996:71-77.
  • 6Scholkopf B,Smola A J,Williamson R C,et al.New support vector algorithm[J].Neural Computation,2000,12(12) : 1207-1245.
  • 7Tipping M E.Sparse Bayesian learning and the relevance vector machine[J].Journal of Machine Learning Research, 2001,2( 1 ) : 211 - 244.
  • 8Nair P B,Choudhury A,Keane A J.Some greedy learning algorithms for sparse regression and classification with mercer kernels [J]. Journal of Machine Learning Research,2002,3:781-801.
  • 9Wu M R,Scholkopf B,Bakir G.A direct method for building sparse kernel learning algorithms[J].Journal of Machine Learning Research, 2006,7 : 603 -624.
  • 10Liu D C,Nocedal J.On the limited memory BFGS method for large scale optimization[J].Math Programming, 1989,45 (3) : 503-528.

共引文献48

同被引文献53

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部