期刊文献+

一种基于密度的离群点检测方法

A Density-based Outlier Detection Method
下载PDF
导出
摘要 基于局部密度的差异来发现离群点的检测方法很难处理离群点聚集在一起的情况,提出一种基于密度的离群点检测方法,该方法先采用DBSCAN聚类算法检测出全局离群点,然后借鉴局部离群因子的评估策略来确定大类簇边界区域内的"错聚"样本点,进而从"错聚"样本点的邻居点中依据距离和局部密度识别出其他局部离群点。实验结果表明该方法具有一定的可行性和有效性。 Outlier detection methods based on the difference between the local density of sample points have difficulty dealing with the case that outliers get together.The proposed method was first applied in the DBSCAN algorithm for global outlier detection,and then the boundary sample points clustered into the wrong cluster were identified by the local outlier factor.At last,other local outlier points within the neighborhood of the boundary points were recognized by measuring the distance and local density.Experimental results show that the proposed method is feasible and effective.
作者 王向阳 WANG Xiangyang(haanxi Xueqian Normal University,Xi'an 710160,Shaanxi,China)
出处 《西南科技大学学报》 CAS 2018年第1期75-78,共4页 Journal of Southwest University of Science and Technology
关键词 离群点 局部密度 局部离群因子 边界样本点 Outlier point Local density Local outlier factor Boundary sample point
  • 相关文献

参考文献8

二级参考文献47

  • 1汪加才,张金城,江效尧.一种有效的可视化孤立点发现与预测新途径[J].计算机科学,2007,34(6):200-203. 被引量:5
  • 2薛安荣,鞠时光.基于空间约束的离群点挖掘[J].计算机科学,2007,34(6):207-209. 被引量:12
  • 3薛安荣,鞠时光,何伟华,陈伟鹤.局部离群点挖掘算法研究[J].计算机学报,2007,30(8):1455-1463. 被引量:96
  • 4Distributed data mining: A survey ZENG L, LI L, DUAN L, et al. Management, 2012, 13(4): 403 [ J]. Information Technology and - 409.
  • 5VAIDYA J, CLIFTON C. Privacy-preserving k-means clustering o- ver vertically partitioned data [ C]// Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2003:206 -215.
  • 6DAMGARD I, PASTRO V, SMART N, et al, Multiparty computa- tion from somewhat homomorphic encryption [ C]//CRYPTO 2012: Proceedings of the 3 2 nd Annual Cryptolol Conference, LNCS7417. Berlin: Springer, 2012:643-662.
  • 7ASHAROV G, .lAIN A, LOPEZ-ALT A, et al. Multiparty computa- tion with low communication computation and interaction via thresh- old FHE [ C]//EUROCRYPT 2012: Proceedings of the 31st Annu- M International Conference on the Theory and Applications of Cryp- tographic Techniques, LNCS 7237. Berlin: Springer, 2012: 483- 501.
  • 8ABBASI S, CIMATO S, DAMIANI E. Clustering models in secure clustered multiparty computation [ J]. Journal of Wireless Mobile Networks, 2013, 4(2): 63-76.
  • 9KIRAN P, SATHISH K, DR K. A novel framework using elliptic curve cryptography for extremely secure transmission in distributed privacy preserving data mining [ J]. Advanced Computing: An In- ternational Journal, 2012, 3(2): 85-92.
  • 10MA J, LI F, LI J. Perturbation method for distributed privacy-pre- serving data mining [ J]. Journal of Zhejiang University: Engineer- ing Science, 2010, 44(2): 276 -282.

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部