期刊文献+

修正Chaplygin气体情形下AW-Rascle模型的Riemann问题及基本波的相互作用

Riemann problem and interaction of elementary waves of modified Chaplygin AW-Rascle model
下载PDF
导出
摘要 研究了一维修正Chaplygin气体AW-Rascle模型的Riemann解及基本波的相互作用.利用特征分析法和相平面分析法,由Rankine-Hugoniot条件和熵条件,构造性地得到了解的存在性和解的整体结构,Riemann解由R+J或S+J组成.利用Riemann解的结论,分情况讨论了4种基本波的相互作用:R+J和S+J;S+J和S+J;S+J和R+J;R+J和R+J.最后,令扰动参数趋于零,证明了Riemann解的稳定性. This paper considered the Riemann solution and the interaction of elementary waves for the traffic flow model proposed with the modified Chaplygin gas pressure law.Firstly,under the Rankine-Hugoniot relation and the entropy condition,the global Riemann solution was constructively obtained by the characteristic and phase plane analysis.The Riemann solution consists of R+J or S+J according to the different data ranges of the initial data.Furthermore,with these results of Riemann problem,four cases were discussed according to the different combinations of elementary waves as following:R+J and S+J,S+J and S+J,S+J and R+J,R+J and R+J,when the initial data consist of three pieces of constant states.Finally,let the perturbed parameter tend to zero,the stability of the Riemann solutions was proved.
作者 王丽媛 WANG Li-yuan(College of Mathematics and System Science,Xinjiang University,Urumqi 830046,China)
出处 《山东理工大学学报(自然科学版)》 CAS 2018年第3期27-30,37,共5页 Journal of Shandong University of Technology:Natural Science Edition
基金 国家自然科学基金项目(11401508 11461066) 新疆自治区高校科研计划项目(XJEDU2014I001)
关键词 AW-Rascle模型 修正Chaplygin气体 RIEMANN问题 基本波的相互作用 激波 AW-Rascle model modified Chaplygin gas Riemann problem interaction of elementary wave shock
  • 相关文献

参考文献1

二级参考文献15

  • 1Aw A, Rascle M. Resurrection of second order models of traffic flow. SIAM J Appl Math, 2000, 60: 916-938.
  • 2Daganzo C. Requiem for second order fluid approximations of traffic flow. Transportation Research Part B, 1995, 29:277-286.
  • 3Berthelin F, Degond P, Delitata M, Rascle M. A model for the formation and evolution of traffic jams. Arch Rational Mech Ana4 2008, 187:185-220.
  • 4Garavello M, Pieeoli B. Traffic flow on a road network using the Aw-Rascle model. Comm Partial Differ Equ, 2006, 31:243-275.
  • 5Greenberg J M. Extensions and amplifications on a traffic model of Aw and Rascle. SIAM J Appl Math, 2001,62:729-745.
  • 6Greenberg J M, Klar A, Rascle M. Congestion on multilane highways. SIAM J Appl Math, 2003, 63: 818-833.
  • 7Herty M, Rascle M. Coupling conditions for a class of second-order models for traffic flow. SIAM J Math Anal, 2006, 38:595-616.
  • 8Lebacque J P, Mammer S, Ha j-Salem H. The Aw-Rascle and Zhang's model: Vacuum problems, existence and regularity of the solutions of the Riemann problem. Transportation Research Part B, 2007, 41: 710-721.
  • 9Moutari S, Rascle M. A hybrid Lagrangian model based on the Aw-Rascle traffic flow model. SIAM J Appl Math, 2007, 68:413-436.
  • 10Shen C, Sun M. Formation of delta shocks and vacuum states in the vanishing pressure limit of Riemann solutions to the uerturbed Aw-Rascle model. J Differ Eau, 2010, 249:3024-3051.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部