期刊文献+

基于像素相关的图像/视频压缩感知观测矩阵 被引量:2

Correlation of Pixels-Based Measurement Matrix for Compressed Image/Video Sensing
下载PDF
导出
摘要 观测矩阵的构造是图像/视频压缩感知中的重要问题之一.为了解决随机性观测矩阵的不确定性以及在信道传输上的压力和提升编码端重构质量,文中提出了一种应用于图像和视频压缩感知的基于邻近像素相关性的确定性稀疏观测矩阵(APM).首先利用文中提出的环形目标点选择法,在观测图像块中均匀地选取目标点;然后利用高斯分布概率密度函数给目标点周围的邻近像素对应的观测矩阵中的元素分配权值,使得每个观测值中仅包含一个目标点和其相邻像素的信息.利用文中提出的APM观测矩阵得到的观测值对图像或视频进行重构时,既可利用相邻像素的相关性,又避免了远距离像素信息的干扰,可得到较高的重构质量.仿真实验表明,与经典和目前文献中较新的几种压缩感知观测矩阵相比,文中提出的观测矩阵具有更高的图像/视频重构质量,较低的重构复杂度,且适用范围更广. The construction of measurement matrixes is one of the most significant issues in the compressed image/video sensing(CIS/CVS).In order to overcome the uncertainty of random measurement matrixes and the heavy pressure in transmission and to improve the reconstruction quality in encoder ends,a novel deterministic sparse measurement matrix named adjacent-pixel-based matrix(APM)is constructed for the CIS/CVS,based on the correlation of adjacent pixels.During the APM construction,first,an annulus choosing method is proposed to uniformly select the target points in the measured image block.Then,the Gaussian probability density function is adopted to distribute weights to the elements of the measurement matrix corresponding to the adjacent pixels of the target points,so as to ensure that each measurement only contains the information of one target point and its adjacent pixels.Applying the measurement from the proposed APM in the image or video reconstruction helps take advantage of the correlation between adjacent pixels and avoid the interference from the other further pixels,and thus a higher reconstruction quality can be achieved.Simulation results show that,in comparison with other classical and novel measurement matrixes in the literature,the proposed APM achieves higher image/video reconstruction quality with lower reconstruction complexity,and that it is of a wider range of application.
作者 杨春玲 李林荪 YANG Chun-ling;LI Lin-sun(School of Electronic and Information Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China)
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第12期27-35,共9页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(61471173) 广东省自然科学基金资助项目(2016A030313455)~~
关键词 压缩感知 观测矩阵 空间相关性 图像视频压缩 compressed sensing measurement matrix spatial correlation image/video compression
  • 相关文献

参考文献5

二级参考文献63

  • 1王洋,陈建文,刘中,刘爱芳.多运动目标ISAR成像方法研究[J].宇航学报,2005,26(4):450-454. 被引量:16
  • 2张焕颖,张守宏,李强.高速运动目标的ISAR成像方法[J].电子与信息学报,2007,29(8):1789-1793. 被引量:18
  • 3冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜 2013 物理学报 62 112901.
  • 4Donoho D L .2006, IEEE Trans. Inform. Theory 52 1289.
  • 5Cands E J, Romberg J, Tao T .2006, IEEE Trans. In- form. Theory 52 489.
  • 6Gribonval R, Nielsen M .2003, IEEE Trans. Inform. The- ory 49 3320.
  • 7Cands E J, Wakin M B .2008, IEEE Sig. Proc. Mag. 25.
  • 8Cands E J .2008, Comptes. Rendus Math. 346 589.
  • 9Baraniuk R, Davenport M, DeVore R, Wakin M .2008, Constructive Approx. 23 253.
  • 10Cands E J, Plan Y .2011, IEEE Trans. Inform. TheoTT 57 7235.

共引文献28

同被引文献23

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部